These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30204463)

  • 1. Fast tonotopy mapping of the rat auditory cortex with a custom-made electrode array.
    Lindovský J; Pysanenko K; Popelář J; Syka J
    Physiol Res; 2018 Dec; 67(6):993-998. PubMed ID: 30204463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat.
    Shiramatsu TI; Takahashi K; Noda T; Kanzaki R; Nakahara H; Takahashi H
    Neuroscience; 2016 Sep; 332():38-52. PubMed ID: 27329334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays.
    Kim SJ; Manyam SC; Warren DJ; Normann RA
    Ann Biomed Eng; 2006 Feb; 34(2):300-9. PubMed ID: 16496084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical mapping of auditory-evoked offset responses in rats.
    Takahashi H; Nakao M; Kaga K
    Neuroreport; 2004 Jul; 15(10):1565-9. PubMed ID: 15232284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast wave propagation in auditory cortex of an awake cat using a chronic microelectrode array.
    Witte RS; Rousche PJ; Kipke DR
    J Neural Eng; 2007 Jun; 4(2):68-78. PubMed ID: 17409481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-density, high-channel count, multiplexed μECoG array for auditory-cortex recordings.
    Escabí MA; Read HL; Viventi J; Kim DH; Higgins NC; Storace DA; Liu AS; Gifford AM; Burke JF; Campisi M; Kim YS; Avrin AE; Spiegel Jan Vd; Huang Y; Li M; Wu J; Rogers JA; Litt B; Cohen YE
    J Neurophysiol; 2014 Sep; 112(6):1566-83. PubMed ID: 24920021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microelectrode array on folding polyimide ribbon for epidural mapping of functional evoked potentials.
    Takahashi H; Ejiri T; Nakao M; Nakamura N; Kaga K; Hervé T
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):510-6. PubMed ID: 12723063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory input directs spatial and temporal plasticity in primary auditory cortex.
    Kilgard MP; Pandya PK; Vazquez J; Gehi A; Schreiner CE; Merzenich MM
    J Neurophysiol; 2001 Jul; 86(1):326-38. PubMed ID: 11431514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accessing ampli-tonotopic organization of rat auditory cortex by microstimulation of cochlear nucleus.
    Takahashi H; Nakao M; Kaga K
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1333-44. PubMed ID: 16041997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and temporal strategy to analyze steady-state sound intensity in cortex.
    Takahashi H; Nakao M; Kaga K
    Neuroreport; 2005 Feb; 16(2):137-40. PubMed ID: 15671863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex.
    Ohl FW; Scheich H; Freeman WJ
    J Neurophysiol; 2000 May; 83(5):3123-32. PubMed ID: 10805706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical microstimulation in auditory cortex of rat elicits best-frequency dependent behaviors.
    Otto KJ; Rousche PJ; Kipke DR
    J Neural Eng; 2005 Jun; 2(2):42-51. PubMed ID: 15928411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intensity changes in a continuous tone: auditory cortical potentials comparison with frequency changes.
    Dimitrijevic A; Lolli B; Michalewski HJ; Pratt H; Zeng FG; Starr A
    Clin Neurophysiol; 2009 Feb; 120(2):374-83. PubMed ID: 19112047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed representation of sound intensity in the rat auditory cortex.
    Takahashi H; Nakao M; Kaga K
    Neuroreport; 2004 Sep; 15(13):2061-5. PubMed ID: 15486482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organization of auditory cortex in the albino rat: binaural response properties.
    Kelly JB; Sally SL
    J Neurophysiol; 1988 Jun; 59(6):1756-69. PubMed ID: 3404203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tonotopic and Field-Specific Representation of Long-Lasting Sustained Activity in Rat Auditory Cortex.
    Shiramatsu TI; Noda T; Akutsu K; Takahashi H
    Front Neural Circuits; 2016; 10():59. PubMed ID: 27559309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Application of simultaneous auditory evoked potentials and functional magnetic resonance recordings for examination of central auditory system--preliminary results].
    Milner R; Rusiniak M; Wolak T; Piatkowska-Janko E; Naumczyk P; Bogorodzki P; Senderski A; Ganc M; Skarzyński H
    Otolaryngol Pol; 2011; 65(3):171-83. PubMed ID: 21916216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of auditory cortex in the albino rat: sound frequency.
    Sally SL; Kelly JB
    J Neurophysiol; 1988 May; 59(5):1627-38. PubMed ID: 3385476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional anatomy of middle latency auditory evoked potentials.
    Barth DS; Di S
    Brain Res; 1991 Nov; 565(1):109-15. PubMed ID: 1773348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a tonotopic organization of the auditory cortex observed with auditory evoked potentials.
    Bertrand O; Perrin F; Pernier J
    Acta Otolaryngol Suppl; 1991; 491():116-22; discussion 123. PubMed ID: 1814142
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.