These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 30204480)
1. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing. Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests. Nguyen TT; Huang J; Wu Q; Nguyen T; Li M BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662 [TBL] [Abstract][Full Text] [Related]
3. A support vector machine for identification of single-nucleotide polymorphisms from next-generation sequencing data. O'Fallon BD; Wooderchak-Donahue W; Crockett DK Bioinformatics; 2013 Jun; 29(11):1361-6. PubMed ID: 23620357 [TBL] [Abstract][Full Text] [Related]
4. Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction. López B; Torrent-Fontbona F; Viñas R; Fernández-Real JM Artif Intell Med; 2018 Apr; 85():43-49. PubMed ID: 28943335 [TBL] [Abstract][Full Text] [Related]
5. Whole-genome sequence-based genomic prediction in laying chickens with different genomic relationship matrices to account for genetic architecture. Ni G; Cavero D; Fangmann A; Erbe M; Simianer H Genet Sel Evol; 2017 Jan; 49(1):8. PubMed ID: 28093063 [TBL] [Abstract][Full Text] [Related]
6. Machine learning random forest for predicting oncosomatic variant NGS analysis. Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410 [TBL] [Abstract][Full Text] [Related]
7. Next generation sequencing of SNPs using the HID-Ion AmpliSeq™ Identity Panel on the Ion Torrent PGM™ platform. Guo F; Zhou Y; Song H; Zhao J; Shen H; Zhao B; Liu F; Jiang X Forensic Sci Int Genet; 2016 Nov; 25():73-84. PubMed ID: 27500651 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of SNP calling using single and multiple-sample calling algorithms by validation against array base genotyping and Mendelian inheritance. Kumar P; Al-Shafai M; Al Muftah WA; Chalhoub N; Elsaid MF; Aleem AA; Suhre K BMC Res Notes; 2014 Oct; 7():747. PubMed ID: 25339461 [TBL] [Abstract][Full Text] [Related]
9. Mutation probability of cytochrome P450 based on a genetic algorithm and support vector machine. Yao Y; Zhang T; Xiong Y; Li L; Huo J; Wei DQ Biotechnol J; 2011 Nov; 6(11):1367-76. PubMed ID: 21721128 [TBL] [Abstract][Full Text] [Related]
10. Derivation and validation of different machine-learning models in mortality prediction of trauma in motorcycle riders: a cross-sectional retrospective study in southern Taiwan. Kuo PJ; Wu SC; Chien PC; Rau CS; Chen YC; Hsieh HY; Hsieh CH BMJ Open; 2018 Jan; 8(1):e018252. PubMed ID: 29306885 [TBL] [Abstract][Full Text] [Related]
11. An improved support vector machine-based diabetic readmission prediction. Cui S; Wang D; Wang Y; Yu PW; Jin Y Comput Methods Programs Biomed; 2018 Nov; 166():123-135. PubMed ID: 30415712 [TBL] [Abstract][Full Text] [Related]
13. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Lee HS; Hong H; Jung DC; Park S; Kim J Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281 [TBL] [Abstract][Full Text] [Related]
14. Prediction of Smoking Behavior From Single Nucleotide Polymorphisms With Machine Learning Approaches. Xu Y; Cao L; Zhao X; Yao Y; Liu Q; Zhang B; Wang Y; Mao Y; Ma Y; Ma JZ; Payne TJ; Li MD; Li L Front Psychiatry; 2020; 11():416. PubMed ID: 32477189 [TBL] [Abstract][Full Text] [Related]
15. Seminal quality prediction using data mining methods. Sahoo AJ; Kumar Y Technol Health Care; 2014; 22(4):531-45. PubMed ID: 24898862 [TBL] [Abstract][Full Text] [Related]
16. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women. Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976 [TBL] [Abstract][Full Text] [Related]
17. Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach. Tai KY; Dhaliwal J; Wong K BMC Bioinformatics; 2022 Aug; 23(1):325. PubMed ID: 35934714 [TBL] [Abstract][Full Text] [Related]
18. Predictive models for breast cancer susceptibility from multiple single nucleotide polymorphisms. Listgarten J; Damaraju S; Poulin B; Cook L; Dufour J; Driga A; Mackey J; Wishart D; Greiner R; Zanke B Clin Cancer Res; 2004 Apr; 10(8):2725-37. PubMed ID: 15102677 [TBL] [Abstract][Full Text] [Related]
19. Influence of Feature Encoding and Choice of Classifier on Disease Risk Prediction in Genome-Wide Association Studies. Mittag F; Römer M; Zell A PLoS One; 2015; 10(8):e0135832. PubMed ID: 26285210 [TBL] [Abstract][Full Text] [Related]