These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 30205092)

  • 1. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antigen recognition by single-domain antibodies: structural latitudes and constraints.
    Henry KA; MacKenzie CR
    MAbs; 2018; 10(6):815-826. PubMed ID: 29916758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction to heavy chain antibodies and derived Nanobodies.
    Vincke C; Muyldermans S
    Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Progress in nanobody and its application in diagnosis].
    Kong Q; Yao Y; Chen R; Lu S
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1351-61. PubMed ID: 25720150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easily Established and Multifunctional Synthetic Nanobody Libraries as Research Tools.
    Liu B; Yang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CD38-Specific Biparatopic Heavy Chain Antibodies Display Potent Complement-Dependent Cytotoxicity Against Multiple Myeloma Cells.
    Schütze K; Petry K; Hambach J; Schuster N; Fumey W; Schriewer L; Röckendorf J; Menzel S; Albrecht B; Haag F; Stortelers C; Bannas P; Koch-Nolte F
    Front Immunol; 2018; 9():2553. PubMed ID: 30524421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobody binding to a conserved epitope promotes norovirus particle disassembly.
    Koromyslova AD; Hansman GS
    J Virol; 2015 Mar; 89(5):2718-30. PubMed ID: 25520510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobodies: natural single-domain antibodies.
    Muyldermans S
    Annu Rev Biochem; 2013; 82():775-97. PubMed ID: 23495938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model.
    Li S; Meng X; Li R; Huang B; Wang X
    BMC Bioinformatics; 2024 Mar; 25(1):122. PubMed ID: 38515052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of nanobodies in plant science and biotechnology.
    Wang W; Yuan J; Jiang C
    Plant Mol Biol; 2021 Jan; 105(1-2):43-53. PubMed ID: 33037986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of nanobody sequence and structure data.
    Mitchell LS; Colwell LJ
    Proteins; 2018 Jul; 86(7):697-706. PubMed ID: 29569425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobody-aided structure determination of the EpsI:EpsJ pseudopilin heterodimer from Vibrio vulnificus.
    Lam AY; Pardon E; Korotkov KV; Hol WGJ; Steyaert J
    J Struct Biol; 2009 Apr; 166(1):8-15. PubMed ID: 19118632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical shift assignments of a camelid nanobody against aflatoxin B
    Nie Y; Li S; Zhu J; Hu R; Liu M; He T; Yang Y
    Biomol NMR Assign; 2019 Apr; 13(1):75-78. PubMed ID: 30328057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold.
    Vincke C; Loris R; Saerens D; Martinez-Rodriguez S; Muyldermans S; Conrath K
    J Biol Chem; 2009 Jan; 284(5):3273-3284. PubMed ID: 19010777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanobodies: From Serendipitous Discovery of Heavy Chain-Only Antibodies in Camelids to a Wide Range of Useful Applications.
    Ji F; Ren J; Vincke C; Jia L; Muyldermans S
    Methods Mol Biol; 2022; 2446():3-17. PubMed ID: 35157266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fully synthetic platform to rapidly generate tetravalent bispecific nanobody-based immunoglobulins.
    Misson Mindrebo L; Liu H; Ozorowski G; Tran Q; Woehl J; Khalek I; Smith JM; Barman S; Zhao F; Keating C; Limbo O; Verma M; Liu J; Stanfield RL; Zhu X; Turner HL; Sok D; Huang PS; Burton DR; Ward AB; Wilson IA; Jardine JG
    Proc Natl Acad Sci U S A; 2023 Jun; 120(24):e2216612120. PubMed ID: 37276407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-level expression of Camelid nanobodies in Nicotiana benthamiana.
    Teh YH; Kavanagh TA
    Transgenic Res; 2010 Aug; 19(4):575-86. PubMed ID: 19862637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanobody(R)-based chromatin immunoprecipitation/micro-array analysis for genome-wide identification of transcription factor DNA binding sites.
    Nguyen-Duc T; Peeters E; Muyldermans S; Charlier D; Hassanzadeh-Ghassabeh G
    Nucleic Acids Res; 2013 Mar; 41(5):e59. PubMed ID: 23275538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.
    Koromyslova AD; Hansman GS
    PLoS Pathog; 2017 Nov; 13(11):e1006636. PubMed ID: 29095961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.