BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30205267)

  • 1. Inhibition evaluation of ABC powder in aluminum dust explosion.
    Jiang H; Bi M; Li B; Zhang D; Gao W
    J Hazard Mater; 2019 Jan; 361():273-282. PubMed ID: 30205267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of aluminum dust explosion by NaHCO
    Jiang H; Bi M; Gao W; Gan B; Zhang D; Zhang Q
    J Hazard Mater; 2018 Feb; 344():902-912. PubMed ID: 29195101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dust dispersibility on the suppressant enhanced explosion parameter (SEEP) in flame propagation of Al dust clouds.
    Bu Y; Amyotte P; Li C; Yuan W; Yuan C; Li G
    J Hazard Mater; 2021 Feb; 404(Pt B):124119. PubMed ID: 33075625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moderation of Al dust explosions by micro- and nano-sized Al
    Bu Y; Li C; Amyotte P; Yuan W; Yuan C; Li G
    J Hazard Mater; 2020 Jan; 381():120968. PubMed ID: 31446226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition characteristics research of aluminum alloy polishing dust explosion through addition of ultrafine Al(OH)
    Lv C; Wang X; Xue S; Xia X; Wang S
    Heliyon; 2023 Sep; 9(9):e19747. PubMed ID: 37809580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanometal Dust Explosion in Confined Vessel: Combustion and Kinetic Analysis.
    Mohd Mokhtar K; Kasmani RM; Che Hassan CR; Hamid MD; Mohamad Nor MI; Mohd Junaidi MU; Ibrahim N
    ACS Omega; 2021 Jul; 6(28):17831-17838. PubMed ID: 34308018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation.
    Myers TJ
    J Hazard Mater; 2008 Nov; 159(1):72-80. PubMed ID: 18423857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression mechanism of Al dust explosion by melamine polyphosphate and melamine cyanurate.
    Jiang H; Bi M; Gao W
    J Hazard Mater; 2020 Mar; 386():121648. PubMed ID: 31740308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation on the Inhibition of Aluminum Dust Explosion by Sodium Bicarbonate and Its Solid Product Sodium Carbonate.
    Chen X; Lu K; Xiao Y; Su B; Wang Y; Zhao T
    ACS Omega; 2022 Jan; 7(1):617-628. PubMed ID: 35036728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition evaluation of gas inhibitors in micron-sized aluminum dust explosion.
    Zhang S; Bi M; Jiang H; Gao W
    J Hazard Mater; 2020 Jul; 393():122524. PubMed ID: 32197205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A latent highly activity energetic fuel: thermal stability and interfacial reaction kinetics of selected fluoropolymer encapsulated sub-micron sized Al particles.
    Wang H; Ren H; Yan T; Li Y; Zhao W
    Sci Rep; 2021 Jan; 11(1):738. PubMed ID: 33436998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures.
    Liu X; Zhang Q
    J Hazard Mater; 2015 Dec; 299():603-17. PubMed ID: 26276701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flame suppression mechanism of aluminum dust cloud by melamine cyanurate and melamine polyphosphate.
    Jiang H; Bi M; Ma D; Li B; Cong H; Gao W
    J Hazard Mater; 2019 Apr; 368():797-810. PubMed ID: 30743227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation on the Explosion Characteristics of an Aluminum Dust-Diethyl Ether-Air Mixture.
    Yao N; Bai C; Wang L; Liu N
    ACS Omega; 2021 Jul; 6(29):18868-18875. PubMed ID: 34337226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of the inerting effect of crystalline II type Ammonium Polyphosphate on explosion characteristics of micron-size Acrylates Copolymer dust.
    Yu Y; Li Y; Zhang Q; Ni W; Jiang J
    J Hazard Mater; 2018 Feb; 344():558-565. PubMed ID: 29102638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of hydrogen explosion control measures by using l-phenylalanine for aluminum wet dust removal systems.
    Zheng X; Xu K; Wang Y; Shen R; Wang Q
    RSC Adv; 2018 Dec; 8(72):41308-41316. PubMed ID: 35559318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Protecting Safety During Dust Fires and Dust Explosions - The Example of the Formosa Fun Coast Water Park Accident].
    Hsieh MH; Wu JW; Li YC; Tang JS; Hsieh CC
    Hu Li Za Zhi; 2016 Feb; 63(1):5-11. PubMed ID: 26813056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.
    Chunmiao Y; Amyotte PR; Hossain MN; Li C
    J Hazard Mater; 2014 Jun; 274():322-30. PubMed ID: 24797905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Dust Layers in Connecting Pipes on Explosion Propagation Characteristics of Flake Aluminum Powder in Cylindrical Interconnected Vessels.
    Wang D; Jing Q; Cheng Y
    ACS Omega; 2023 Jan; 8(2):2197-2212. PubMed ID: 36687091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.