These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 30205334)
1. Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder. Abraham B; Nair MS Comput Med Imaging Graph; 2018 Nov; 69():60-68. PubMed ID: 30205334 [TBL] [Abstract][Full Text] [Related]
2. Automatic stratification of prostate tumour aggressiveness using multiparametric MRI: a horizontal comparison of texture features. Sun Y; Reynolds HM; Wraith D; Williams S; Finnegan ME; Mitchell C; Murphy D; Haworth A Acta Oncol; 2019 Aug; 58(8):1118-1126. PubMed ID: 30994052 [No Abstract] [Full Text] [Related]
3. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876 [TBL] [Abstract][Full Text] [Related]
4. A deep dive into understanding tumor foci classification using multiparametric MRI based on convolutional neural network. Zong W; Lee JK; Liu C; Carver EN; Feldman AM; Janic B; Elshaikh MA; Pantelic MV; Hearshen D; Chetty IJ; Movsas B; Wen N Med Phys; 2020 Sep; 47(9):4077-4086. PubMed ID: 32449176 [TBL] [Abstract][Full Text] [Related]
6. Prostate cancer classification with multiparametric MRI transfer learning model. Yuan Y; Qin W; Buyyounouski M; Ibragimov B; Hancock S; Han B; Xing L Med Phys; 2019 Feb; 46(2):756-765. PubMed ID: 30597561 [TBL] [Abstract][Full Text] [Related]
7. Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Kwak JT; Xu S; Wood BJ; Turkbey B; Choyke PL; Pinto PA; Wang S; Summers RM Med Phys; 2015 May; 42(5):2368-78. PubMed ID: 25979032 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of Diffusion Kurtosis Imaging Versus Standard Diffusion Imaging for Detection and Grading of Peripheral Zone Prostate Cancer. Roethke MC; Kuder TA; Kuru TH; Fenchel M; Hadaschik BA; Laun FB; Schlemmer HP; Stieltjes B Invest Radiol; 2015 Aug; 50(8):483-9. PubMed ID: 25867657 [TBL] [Abstract][Full Text] [Related]
9. Multiparametric Magnetic Resonance Imaging for Discriminating Low-Grade From High-Grade Prostate Cancer. Vos EK; Kobus T; Litjens GJ; Hambrock T; Hulsbergen-van de Kaa CA; Barentsz JO; Maas MC; Scheenen TW Invest Radiol; 2015 Aug; 50(8):490-7. PubMed ID: 25867656 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring. Singh D; Kumar V; Das CJ; Singh A; Mehndiratta A NMR Biomed; 2021 Jun; 34(6):e4495. PubMed ID: 33638244 [TBL] [Abstract][Full Text] [Related]
11. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Vignati A; Mazzetti S; Giannini V; Russo F; Bollito E; Porpiglia F; Stasi M; Regge D Phys Med Biol; 2015 Apr; 60(7):2685-701. PubMed ID: 25768265 [TBL] [Abstract][Full Text] [Related]
12. Computer aided detection in prostate cancer diagnostics: A promising alternative to biopsy? A retrospective study from 104 lesions with histological ground truth. Thon A; Teichgräber U; Tennstedt-Schenk C; Hadjidemetriou S; Winzler S; Malich A; Papageorgiou I PLoS One; 2017; 12(10):e0185995. PubMed ID: 29023572 [TBL] [Abstract][Full Text] [Related]
13. Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study. Ginsburg SB; Algohary A; Pahwa S; Gulani V; Ponsky L; Aronen HJ; Boström PJ; Böhm M; Haynes AM; Brenner P; Delprado W; Thompson J; Pulbrock M; Taimen P; Villani R; Stricker P; Rastinehad AR; Jambor I; Madabhushi A J Magn Reson Imaging; 2017 Jul; 46(1):184-193. PubMed ID: 27990722 [TBL] [Abstract][Full Text] [Related]
14. Assessment of prostate cancer prognostic Gleason grade group using zonal-specific features extracted from biparametric MRI using a KNN classifier. Jensen C; Carl J; Boesen L; Langkilde NC; Østergaard LR J Appl Clin Med Phys; 2019 Feb; 20(2):146-153. PubMed ID: 30712281 [TBL] [Abstract][Full Text] [Related]
15. Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI. Khanfari H; Mehranfar S; Cheki M; Mohammadi Sadr M; Moniri S; Heydarheydari S; Rezaeijo SM BMC Med Imaging; 2023 Nov; 23(1):195. PubMed ID: 37993801 [TBL] [Abstract][Full Text] [Related]
16. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models. Khalvati F; Wong A; Haider MA BMC Med Imaging; 2015 Aug; 15():27. PubMed ID: 26242589 [TBL] [Abstract][Full Text] [Related]
17. A self-tuned graph-based framework for localization and grading prostate cancer lesions: An initial evaluation based on multiparametric magnetic resonance imaging. Chen W; Lin M; Gibson E; Bastian-Jordan M; Cool DW; Kassam Z; Liang H; Feng G; Ward AD; Chiu B Comput Biol Med; 2018 May; 96():252-265. PubMed ID: 29653354 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Artificial Intelligence Techniques to Evaluate Performance of a Classifier for Automatic Grading of Prostate Cancer From Digitized Histopathologic Images. Nir G; Karimi D; Goldenberg SL; Fazli L; Skinnider BF; Tavassoli P; Turbin D; Villamil CF; Wang G; Thompson DJS; Black PC; Salcudean SE JAMA Netw Open; 2019 Mar; 2(3):e190442. PubMed ID: 30848813 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Analysis of Prostate Multiparametric MR Images for Detection of Aggressive Prostate Cancer in the Peripheral Zone: A Multiple Imager Study. Hoang Dinh A; Melodelima C; Souchon R; Lehaire J; Bratan F; Mège-Lechevallier F; Ruffion A; Crouzet S; Colombel M; Rouvière O Radiology; 2016 Jul; 280(1):117-27. PubMed ID: 26859255 [TBL] [Abstract][Full Text] [Related]
20. Multiparametric MRI in detection and staging of prostate cancer. Boesen L Dan Med J; 2017 Feb; 64(2):. PubMed ID: 28157066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]