BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30205544)

  • 21. Bacterial degradation of microcystins and nodularin.
    Imanishi S; Kato H; Mizuno M; Tsuji K; Harada K
    Chem Res Toxicol; 2005 Mar; 18(3):591-8. PubMed ID: 15777098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of a new microcystin-degrading bacterium isolated from Lake Chaohu, China.
    Zhang J; Shi H; Liu A; Cao Z; Hao J; Gong R
    Bull Environ Contam Toxicol; 2015 May; 94(5):661-6. PubMed ID: 25820434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ozonation degradation of microcystin-LR in aqueous solution: intermediates, byproducts and pathways.
    Chang J; Chen ZL; Wang Z; Shen JM; Chen Q; Kang J; Yang L; Liu XW; Nie CX
    Water Res; 2014 Oct; 63():52-61. PubMed ID: 24981743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS).
    Foss AJ; Aubel MT
    Toxicon; 2015 Sep; 104():91-101. PubMed ID: 26220800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Taxonomic and Genotypical Heterogeneity of Microcystin degrading Bacterioplankton in Western Lake Erie.
    Krishnan A; Zhang Y; Balaban M; Seo Y; Mou X
    Harmful Algae; 2020 Sep; 98():101895. PubMed ID: 33129453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of glucose and incubation temperature on metabolically active Lactobacillus plantarum from dadih in removing microcystin-LR.
    Surono IS; Collado MC; Salminen S; Meriluoto J
    Food Chem Toxicol; 2008 Feb; 46(2):502-7. PubMed ID: 17928120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microcystin-LR exposure enhances toxin-degrading capacity and reduces metabolic diversity of sediment microbial communities.
    Ding Q; Song X; Yuan M; Xu K; Huang J; Sun R; Zhang J; Yin L; Pu Y
    Environ Pollut; 2022 Oct; 311():119947. PubMed ID: 35970342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel pathway for the anaerobic biotransformation of microcystin-LR using enrichment cultures.
    Zhu FP; Han ZL; Duan JL; Shi XS; Wang TT; Sheng GP; Wang SG; Yuan XZ
    Environ Pollut; 2019 Apr; 247():1064-1070. PubMed ID: 30823335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Characterization of enzymatic degradation of microcystins by a new isolated bacterium].
    He HS; Yan H; Zhou J; Ge SY; Xiao BQ; Lü L
    Huan Jing Ke Xue; 2006 Jun; 27(6):1171-5. PubMed ID: 16921956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of microcystin-LR using acclimatized bacteria isolated from different units of the drinking water treatment plant.
    Kumar P; Hegde K; Brar SK; Cledon M; Kermanshahi-Pour A; Roy-Lachapelle A; Galvez-Cloutier R
    Environ Pollut; 2018 Nov; 242(Pt A):407-416. PubMed ID: 30005254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and determination of microcystins in source water and waterbloom sample from Meiliang Bay, Taihu Lake, China.
    Feng XG; Ding Z; Wei T; Yuan CW; Fu DG
    Biomed Environ Sci; 2006 Jun; 19(3):225-31. PubMed ID: 16944781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of electrospray tandem mass spectrometry for identification of microcystins during a cyanobacterial bloom event.
    Frias HV; Mendes MA; Cardozo KH; Carvalho VM; Tomazela D; Colepicolo P; Pinto E
    Biochem Biophys Res Commun; 2006 Jun; 344(3):741-6. PubMed ID: 16631112
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Process optimization for microcystin-LR degradation by Response Surface Methodology and mechanism analysis in gas-liquid hybrid discharge system.
    Zhang Y; Wei H; Xin Q; Wang M; Wang Q; Wang Q; Cong Y
    J Environ Manage; 2016 Dec; 183(Pt 3):726-732. PubMed ID: 27641651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influences of metal ions on microcystin-LR degradation capacity and dynamics in microbial distribution of biofilm collected from water treatment plant nearby Kasumigaura Lake.
    Wang X; Utsumi M; Gao Y; Li Q; Tian X; Shimizu K; Sugiura N
    Chemosphere; 2016 Mar; 147():230-8. PubMed ID: 26766360
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-efficient and sustainable biodegradation of microcystin-LR using Sphingopyxis sp. YF1 immobilized Fe
    Wu P; Li G; He Y; Luo D; Li L; Guo J; Ding P; Yang F
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110633. PubMed ID: 31740324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Degradation of Multiple Peptides by Microcystin-Degrader
    Santos AA; Soldatou S; de Magalhães VF; Azevedo SMFO; Camacho-Muñoz D; Lawton LA; Edwards C
    Toxins (Basel); 2021 Apr; 13(4):. PubMed ID: 33917728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of a microcystin-LR biodegrading bacterial isolate: Ochrobactrum sp. FDT5.
    Jing W; Sui G; Liu S
    Bull Environ Contam Toxicol; 2014 Jan; 92(1):119-22. PubMed ID: 24318164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elimination kinetics and detoxification mechanisms of microcystin-LR during UV/Chlorine process.
    Zhang X; He J; Xiao S; Yang X
    Chemosphere; 2019 Jan; 214():702-709. PubMed ID: 30293023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotic and abiotic factors affect microcystin-LR concentrations in water/sediment interface.
    Santos A; Rachid C; Pacheco AB; Magalhães V
    Microbiol Res; 2020 Jun; 236():126452. PubMed ID: 32200249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Anaerobic biodegradation of microcystin by bacterial community from sediment of Dianchi Lake].
    Chen XG; Yang X; Chen J; Zhang SH; Xiao BD
    Huan Jing Ke Xue; 2009 Sep; 30(9):2527-31. PubMed ID: 19927798
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.