BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30206276)

  • 1. Salt Bridge in Aqueous Solution: Strong Structural Motifs but Weak Enthalpic Effect.
    Pylaeva S; Brehm M; Sebastiani D
    Sci Rep; 2018 Sep; 8(1):13626. PubMed ID: 30206276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy landscape of a minimalist salt bridge model.
    Li X; Lv C; Corbett KM; Zheng L; Wu D; Yang W
    Protein Sci; 2016 Jan; 25(1):270-6. PubMed ID: 26300526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free energy of solvated salt bridges: a simulation and experimental study.
    White AD; Keefe AJ; Ella-Menye JR; Nowinski AK; Shao Q; Pfaendtner J; Jiang S
    J Phys Chem B; 2013 Jun; 117(24):7254-9. PubMed ID: 23697872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations.
    Vener MV; Odinokov AV; Wehmeyer C; Sebastiani D
    J Chem Phys; 2015 Jun; 142(21):215106. PubMed ID: 26049530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties of alkali-halide salt solutions about polarizable nanoparticle solutes for different ion models.
    Wynveen A; Bresme F
    J Chem Phys; 2010 Oct; 133(14):144706. PubMed ID: 20950029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt bridge interactions: stability of the ionic and neutral complexes in the gas phase, in solution, and in proteins.
    Barril X; Alemán C; Orozco M; Luque FJ
    Proteins; 1998 Jul; 32(1):67-79. PubMed ID: 9672043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields.
    Debiec KT; Gronenborn AM; Chong LT
    J Phys Chem B; 2014 Jun; 118(24):6561-9. PubMed ID: 24702709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate Description of Solvent-Exposed Salt Bridges with a Non-polarizable Force Field Incorporating Solvent Effects.
    Liu H; Fu H; Chipot C; Shao X; Cai W
    J Chem Inf Model; 2022 Aug; 62(16):3863-3873. PubMed ID: 35920605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of backbone hydration and salt-bridge formation in stability of alpha-helix in solution.
    Ghosh T; Garde S; García AE
    Biophys J; 2003 Nov; 85(5):3187-93. PubMed ID: 14581218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
    Rovó P; Farkas V; Hegyi O; Szolomájer-Csikós O; Tóth GK; Perczel A
    J Pept Sci; 2011 Sep; 17(9):610-9. PubMed ID: 21644245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural dynamics of the box C/D RNA kink-turn and its complex with proteins: the role of the A-minor 0 interaction, long-residency water bridges, and structural ion-binding sites revealed by molecular simulations.
    Spacková N; Réblová K; Sponer J
    J Phys Chem B; 2010 Aug; 114(32):10581-93. PubMed ID: 20701388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of hydrophobic associations in aqueous salt solutions indicate a connection between water hydrogen bonding and the Hofmeister effect.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2007 Dec; 129(48):14887-98. PubMed ID: 17994735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The [Lys(-2)-Arg(-1)-des(17-21)]-endothelin-1 peptide retains the specific Arg(-1)-Asp8 salt bridge but reveals discrepancies between NMR data and molecular dynamics simulations.
    Kaas Q; Aumelas A; Kubo S; Chino N; Kobayashi Y; Chiche L
    Biochemistry; 2002 Sep; 41(37):11099-108. PubMed ID: 12220174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP; MacCallum JL; Tieleman DP
    Biochemistry; 2003 Aug; 42(30):8976-87. PubMed ID: 12885230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions.
    Sega M; Kantorovich SS; Holm C; Arnold A
    J Chem Phys; 2014 Jun; 140(21):211101. PubMed ID: 24907981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-dependent solubilities and mean ionic activity coefficients of alkali halides in water from molecular dynamics simulations.
    Mester Z; Panagiotopoulos AZ
    J Chem Phys; 2015 Jul; 143(4):044505. PubMed ID: 26233143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory.
    Thomas AS; Elcock AH
    J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.
    Kann ZR; Skinner JL
    J Chem Phys; 2014 Sep; 141(10):104507. PubMed ID: 25217937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Salt bridge stability in monomeric proteins.
    Kumar S; Nussinov R
    J Mol Biol; 1999 Nov; 293(5):1241-55. PubMed ID: 10547298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion pairing in aqueous electrolyte solutions with biologically relevant anions.
    Ganguly P; Schravendijk P; Hess B; van der Vegt NF
    J Phys Chem B; 2011 Apr; 115(13):3734-9. PubMed ID: 21410261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.