BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30206286)

  • 1. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation.
    Park S; An B; Park S
    Sci Rep; 2018 Sep; 8(1):13568. PubMed ID: 30206286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats.
    Cao J; Wang H; Cao Y; Kan S; Li J; Liu Y
    Int J Mol Sci; 2024 Feb; 25(4):. PubMed ID: 38396955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene loss, genome rearrangement, and accelerated substitution rates in plastid genome of Hypericum ascyron (Hypericaceae).
    Claude SJ; Park S; Park S
    BMC Plant Biol; 2022 Mar; 22(1):135. PubMed ID: 35321651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lineage-Specific Variation in IR Boundary Shift Events, Inversions, and Substitution Rates among Caprifoliaceae
    Park S; Jun M; Park S; Park S
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensive genomic rearrangements mediated by repetitive sequences in plastomes of Medicago and its relatives.
    Wu S; Chen J; Li Y; Liu A; Li A; Yin M; Shrestha N; Liu J; Ren G
    BMC Plant Biol; 2021 Sep; 21(1):421. PubMed ID: 34521343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba.
    Shrestha B; Weng ML; Theriot EC; Gilbert LE; Ruhlman TA; Krosnick SE; Jansen RK
    Mol Phylogenet Evol; 2019 Sep; 138():53-64. PubMed ID: 31129347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes.
    Weng ML; Ruhlman TA; Jansen RK
    New Phytol; 2017 Apr; 214(2):842-851. PubMed ID: 27991660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic changes in the plastid and mitochondrial genomes of the angiosperm Corydalis pauciovulata (Papaveraceae).
    Park S; An B; Park S
    BMC Plant Biol; 2024 Apr; 24(1):303. PubMed ID: 38644497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total duplication of the small single copy region in the angiosperm plastome: Rearrangement and inverted repeat instability in Asarum.
    Sinn BT; Sedmak DD; Kelly LM; Freudenstein JV
    Am J Bot; 2018 Jan; 105(1):71-84. PubMed ID: 29532923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage.
    Guisinger MM; Kuehl JV; Boore JL; Jansen RK
    Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions.
    Guo YY; Yang JX; Bai MZ; Zhang GQ; Liu ZJ
    BMC Plant Biol; 2021 May; 21(1):248. PubMed ID: 34058997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Chloroplast Genomics of
    Xu X; Wang D
    Front Plant Sci; 2020; 11():600354. PubMed ID: 33584746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable presence of the inverted repeat and plastome stability in Erodium.
    Blazier JC; Jansen RK; Mower JP; Govindu M; Zhang J; Weng ML; Ruhlman TA
    Ann Bot; 2016 Jun; 117(7):1209-20. PubMed ID: 27192713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genus-Wide Screening Reveals Four Distinct Types of Structural Plastid Genome Organization in Pelargonium (Geraniaceae).
    Röschenbleck J; Wicke S; Weinl S; Kudla J; Müller KF
    Genome Biol Evol; 2017 Jan; 9(1):64-76. PubMed ID: 28172771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates.
    Weng ML; Blazier JC; Govindu M; Jansen RK
    Mol Biol Evol; 2014 Mar; 31(3):645-59. PubMed ID: 24336877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimosoid legume plastome evolution: IR expansion, tandem repeat expansions, and accelerated rate of evolution in clpP.
    Dugas DV; Hernandez D; Koenen EJ; Schwarz E; Straub S; Hughes CE; Jansen RK; Nageswara-Rao M; Staats M; Trujillo JT; Hajrah NH; Alharbi NS; Al-Malki AL; Sabir JS; Bailey CD
    Sci Rep; 2015 Nov; 5():16958. PubMed ID: 26592928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): comparative analysis with related IR-lacking clade species.
    Moghaddam M; Ohta A; Shimizu M; Terauchi R; Kazempour-Osaloo S
    BMC Plant Biol; 2022 Feb; 22(1):75. PubMed ID: 35183127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence Analysis of the Plastomes of Two Tibetan Medicinal Plants of the Family
    Wu D; Qin Q; Wang X; Niu Y; Zhang S; Mu Z
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):352. PubMed ID: 38179751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. accD nuclear transfer of Platycodon grandiflorum and the plastid of early Campanulaceae.
    Hong CP; Park J; Lee Y; Lee M; Park SG; Uhm Y; Lee J; Kim CK
    BMC Genomics; 2017 Aug; 18(1):607. PubMed ID: 28800729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does IR-loss promote plastome structural variation and sequence evolution?
    Wang ZX; Wang DJ; Yi TS
    Front Plant Sci; 2022; 13():888049. PubMed ID: 36247567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.