These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30206599)

  • 1. Controlling ion transport through nanopores: modeling transistor behavior.
    Mádai E; Matejczyk B; Dallos A; Valiskó M; Boda D
    Phys Chem Chem Phys; 2018 Oct; 20(37):24156-24167. PubMed ID: 30206599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rectification of bipolar nanopores in multivalent electrolytes: effect of charge inversion and strong ionic correlations.
    Fertig D; Valiskó M; Boda D
    Phys Chem Chem Phys; 2020 Sep; 22(34):19033-19045. PubMed ID: 32812580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo.
    Matejczyk B; Valiskó M; Wolfram MT; Pietschmann JF; Boda D
    J Chem Phys; 2017 Mar; 146(12):124125. PubMed ID: 28388126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of a model nanopore sensor: Ion competition underlies device behavior.
    Mádai E; Valiskó M; Dallos A; Boda D
    J Chem Phys; 2017 Dec; 147(24):244702. PubMed ID: 29289138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From nanotubes to nanoholes: Scaling of selectivity in uniformly charged nanopores through the Dukhin number for 1:1 electrolytes.
    Sarkadi Z; Fertig D; Ható Z; Valiskó M; Boda D
    J Chem Phys; 2021 Apr; 154(15):154704. PubMed ID: 33887923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of electrostatic correlations on the ionic current rectification in conical nanopores.
    Alidoosti E; Zhao H
    Electrophoresis; 2019 Oct; 40(20):2655-2661. PubMed ID: 31206777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a bipolar nanopore as a sensor: rectification as an additional device function.
    Mádai E; Valiskó M; Boda D
    Phys Chem Chem Phys; 2019 Sep; 21(36):19772-19784. PubMed ID: 31475284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore.
    Chaudhry JH; Comer J; Aksimentiev A; Olson LN
    Commun Comput Phys; 2014 Jan; 15(1):. PubMed ID: 24363784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic particle translocation through a nanopore containing a floating electrode.
    Zhang M; Ai Y; Sharma A; Joo SW; Kim DS; Qian S
    Electrophoresis; 2011 Jul; 32(14):1864-74. PubMed ID: 21710551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale analysis of the effect of surface charge pattern on a nanopore's rectification and selectivity properties: From all-atom model to Poisson-Nernst-Planck.
    Valiskó M; Matejczyk B; Ható Z; Kristóf T; Mádai E; Fertig D; Gillespie D; Boda D
    J Chem Phys; 2019 Apr; 150(14):144703. PubMed ID: 30981242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the Device Behavior of Biological and Synthetic Nanopores with Reduced Models.
    Boda D; Valiskó M; Gillespie D
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of pH-Regulated Electrokinetic Ion Transport in Nanopores with Polyelectrolyte Brushes.
    Qiu H; Wang X; Choi A; Zhao W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4194-4197. PubMed ID: 30441279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores.
    Buyukdagli S; Manghi M; Palmeri J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating Born solvation energy into the three-dimensional Poisson-Nernst-Planck model to study ion selectivity in KcsA K^{+} channels.
    Liu X; Lu B
    Phys Rev E; 2017 Dec; 96(6-1):062416. PubMed ID: 29347452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate modeling of a biological nanopore with an extended continuum framework.
    Willems K; Ruić D; L R Lucas F; Barman U; Verellen N; Hofkens J; Maglia G; Van Dorpe P
    Nanoscale; 2020 Aug; 12(32):16775-16795. PubMed ID: 32780087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic motion of a soft spherical particle in a nanopore.
    Zhang M; Ai Y; Kim DS; Jeong JH; Joo SW; Qian S
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):165-74. PubMed ID: 21775109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Ion Transport through a Nanopore by Self-Oscillating Chemical Reactions.
    Zhang X; Han X; Qian S; Yang Y; Hu N
    Anal Chem; 2019 Apr; 91(7):4600-4607. PubMed ID: 30832478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic correlations in inhomogeneous charged fluids beyond loop expansion.
    Buyukdagli S; Achim CV; Ala-Nissila T
    J Chem Phys; 2012 Sep; 137(10):104902. PubMed ID: 22979885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-driven ionic transport through nanochannels with inhomogenous charge distributions.
    Szymczyk A; Zhu H; Balannec B
    Langmuir; 2010 Jan; 26(2):1214-20. PubMed ID: 19735115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport.
    Ramírez P; Mafé S; Aguilella VM; Alcaraz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011910. PubMed ID: 12935179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.