These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: a study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. Ejsing CS; Moehring T; Bahr U; Duchoslav E; Karas M; Simons K; Shevchenko A J Mass Spectrom; 2006 Mar; 41(3):372-89. PubMed ID: 16498600 [TBL] [Abstract][Full Text] [Related]
3. Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerevisiae. Guan XL; Wenk MR Yeast; 2006 Apr; 23(6):465-77. PubMed ID: 16652392 [TBL] [Abstract][Full Text] [Related]
5. Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae. Hechtberger P; Zinser E; Saf R; Hummel K; Paltauf F; Daum G Eur J Biochem; 1994 Oct; 225(2):641-9. PubMed ID: 7957179 [TBL] [Abstract][Full Text] [Related]
6. Liquid chromatography with dual parallel mass spectrometry and 31P nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin. II. Bovine milk sphingolipids. Byrdwell WC; Perry RH J Chromatogr A; 2007 Apr; 1146(2):164-85. PubMed ID: 17303148 [TBL] [Abstract][Full Text] [Related]
7. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: "inside-out" sphingolipidomics. Sullards MC; Allegood JC; Kelly S; Wang E; Haynes CA; Park H; Chen Y; Merrill AH Methods Enzymol; 2007; 432():83-115. PubMed ID: 17954214 [TBL] [Abstract][Full Text] [Related]
8. Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Shui G; Guan XL; Low CP; Chua GH; Goh JS; Yang H; Wenk MR Mol Biosyst; 2010 Jun; 6(6):1008-17. PubMed ID: 20485745 [TBL] [Abstract][Full Text] [Related]
9. Preliminary physiological characteristics of thermotolerant Saccharomyces cerevisiae clinical isolates identified by molecular biology techniques. Siedlarz P; Sroka M; Dyląg M; Nawrot U; Gonchar M; Kus-Liśkiewicz M Lett Appl Microbiol; 2016 Mar; 62(3):277-82. PubMed ID: 26693946 [TBL] [Abstract][Full Text] [Related]
10. Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring. Ejsing CS; Bilgin M; Fabregat A PLoS One; 2015; 10(12):e0144817. PubMed ID: 26660097 [TBL] [Abstract][Full Text] [Related]
11. High-performance liquid chromatography analysis of molecular species of sphingolipid-related long chain bases and long chain base phosphates in Saccharomyces cerevisiae after derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Lester RL; Dickson RC Anal Biochem; 2001 Nov; 298(2):283-92. PubMed ID: 11700984 [TBL] [Abstract][Full Text] [Related]
12. Sphingolipid long-chain-base auxotrophs of Saccharomyces cerevisiae: genetics, physiology, and a method for their selection. Pinto WJ; Srinivasan B; Shepherd S; Schmidt A; Dickson RC; Lester RL J Bacteriol; 1992 Apr; 174(8):2565-74. PubMed ID: 1556075 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization and targeted quantitative profiling of the sphingolipidome in rice. Ishikawa T; Ito Y; Kawai-Yamada M Plant J; 2016 Nov; 88(4):681-693. PubMed ID: 27454201 [TBL] [Abstract][Full Text] [Related]
17. Rescue of cell growth by sphingosine with disruption of lipid microdomain formation in Saccharomyces cerevisiae deficient in sphingolipid biosynthesis. Tani M; Kihara A; Igarashi Y Biochem J; 2006 Feb; 394(Pt 1):237-42. PubMed ID: 16225461 [TBL] [Abstract][Full Text] [Related]
18. Characterization of enzymatic synthesis of sphingolipid long-chain bases in Saccharomyces cerevisiae: mutant strains exhibiting long-chain-base auxotrophy are deficient in serine palmitoyltransferase activity. Pinto WJ; Wells GW; Lester RL J Bacteriol; 1992 Apr; 174(8):2575-81. PubMed ID: 1556076 [TBL] [Abstract][Full Text] [Related]
19. Sphingolipidomics: An Important Mechanistic Tool for Studying Fungal Pathogens. Singh A; Del Poeta M Front Microbiol; 2016; 7():501. PubMed ID: 27148190 [TBL] [Abstract][Full Text] [Related]
20. Lipidomic analysis of psychrophilic yeasts cultivated at different temperatures. Řezanka T; Kolouchová I; Sigler K Biochim Biophys Acta; 2016 Nov; 1861(11):1634-1642. PubMed ID: 27422372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]