BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 30207021)

  • 1. 3D-Printed Carbon Electrodes for Neurotransmitter Detection.
    Yang C; Cao Q; Puthongkham P; Lee ST; Ganesana M; Lavrik NV; Venton BJ
    Angew Chem Int Ed Engl; 2018 Oct; 57(43):14255-14259. PubMed ID: 30207021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D-Printed Carbon Nanoelectrodes for In Vivo Neurotransmitter Sensing.
    Cao Q; Shin M; Lavrik NV; Venton BJ
    Nano Lett; 2020 Sep; 20(9):6831-6836. PubMed ID: 32813535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flame etching enhances the sensitivity of carbon-fiber microelectrodes.
    Strand AM; Venton BJ
    Anal Chem; 2008 May; 80(10):3708-15. PubMed ID: 18416534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
    Tian P; Chen C; Hu J; Qi J; Wang Q; Chen JC; Cavanaugh J; Peng Y; Cheng MM
    Biomed Microdevices; 2017 Nov; 20(1):4. PubMed ID: 29170867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon microelectrodes with customized shapes for neurotransmitter detection: A review.
    Shao Z; Chang Y; Venton BJ
    Anal Chim Acta; 2022 Aug; 1223():340165. PubMed ID: 35998998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine.
    Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ
    Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors.
    Cardoso RM; Mendonça DMH; Silva WP; Silva MNT; Nossol E; da Silva RAB; Richter EM; Muñoz RAA
    Anal Chim Acta; 2018 Nov; 1033():49-57. PubMed ID: 30172331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glassy carbon microelectrode arrays enable voltage-peak separated simultaneous detection of dopamine and serotonin using fast scan cyclic voltammetry.
    Castagnola E; Thongpang S; Hirabayashi M; Nava G; Nimbalkar S; Nguyen T; Lara S; Oyawale A; Bunnell J; Moritz C; Kassegne S
    Analyst; 2021 Jun; 146(12):3955-3970. PubMed ID: 33988202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold Nanoparticle Modified Carbon Fiber Microelectrodes for Enhanced Neurochemical Detection.
    Mohanaraj S; Wonnenberg P; Cohen B; Zhao H; Hartings MR; Zou S; Fox DM; Zestos AG
    J Vis Exp; 2019 May; (147):. PubMed ID: 31132067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine.
    Yang C; Jacobs CB; Nguyen MD; Ganesana M; Zestos AG; Ivanov IN; Puretzky AA; Rouleau CM; Geohegan DB; Venton BJ
    Anal Chem; 2016 Jan; 88(1):645-52. PubMed ID: 26639609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylenimine carbon nanotube fiber electrodes for enhanced detection of neurotransmitters.
    Zestos AG; Jacobs CB; Trikantzopoulos E; Ross AE; Venton BJ
    Anal Chem; 2014 Sep; 86(17):8568-75. PubMed ID: 25117550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes.
    Jacobs CB; Vickrey TL; Venton BJ
    Analyst; 2011 Sep; 136(17):3557-65. PubMed ID: 21373669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanofiber electrode array for electrochemical detection of dopamine using fast scan cyclic voltammetry.
    Koehne JE; Marsh M; Boakye A; Douglas B; Kim IY; Chang SY; Jang DP; Bennet KE; Kimble C; Andrews R; Meyyappan M; Lee KH
    Analyst; 2011 May; 136(9):1802-5. PubMed ID: 21387028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon nanospike coated nanoelectrodes for measurements of neurotransmitters.
    Cao Q; Shao Z; Hensley D; Venton BJ
    Faraday Discuss; 2022 Apr; 233(0):303-314. PubMed ID: 34889344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS).
    Pramanick B; Martinez-Chapa SO; Madou M; Hwang H
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-fiber microelectrodes for in vivo applications.
    Huffman ML; Venton BJ
    Analyst; 2009 Jan; 134(1):18-24. PubMed ID: 19082168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanofiber electrode for neurochemical monitoring.
    Zhang DA; Rand E; Marsh M; Andrews RJ; Lee KH; Meyyappan M; Koehne JE
    Mol Neurobiol; 2013 Oct; 48(2):380-5. PubMed ID: 23975638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene oxide fiber microelectrodes with controlled sheet alignment for sensitive neurotransmitter detection.
    Jarosova R; Ostertag BJ; Ross AE
    Nanoscale; 2023 Sep; 15(37):15249-15258. PubMed ID: 37672207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.