BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 30207155)

  • 1. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility, Specificity and Accuracy of Relative Quantification Using Spectral Library-based Data-independent Acquisition.
    Barkovits K; Pacharra S; Pfeiffer K; Steinbach S; Eisenacher M; Marcus K; Uszkoreit J
    Mol Cell Proteomics; 2020 Jan; 19(1):181-197. PubMed ID: 31699904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cerebrospinal fluid data for use as spectral library, for biomarker research.
    Schilde LM; Steinbach S; Serschnitzki B; Maass F; Bähr M; Lingor P; Marcus K; May C
    Data Brief; 2020 Oct; 32():106048. PubMed ID: 32775566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins.
    Cho KC; Oh S; Wang Y; Rosenthal LS; Na CH; Zhang H
    J Proteome Res; 2021 Sep; 20(9):4284-4291. PubMed ID: 34384221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-dimensional proteomics analysis of human cerebrospinal fluid with trapped ion mobility spectrometry using PASEF.
    Mun DG; Budhraja R; Bhat FA; Zenka RM; Johnson KL; Moghekar A; Pandey A
    Proteomics; 2023 May; 23(10):e2200507. PubMed ID: 36752121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CSF Sample Preparation for Data-Independent Acquisition.
    Barkovits K; Tönges L; Marcus K
    Methods Mol Biol; 2019; 2044():61-67. PubMed ID: 31432406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data-independent acquisition (DIA)-based quantification workflow for proteome analysis of 5000 cells.
    Jiang N; Gao Y; Xu J; Luo F; Zhang X; Chen R
    J Pharm Biomed Anal; 2022 Jul; 216():114795. PubMed ID: 35489320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput and accurate serum proteome profiling by integrated sample preparation technology and single-run data independent mass spectrometry analysis.
    Lin L; Zheng J; Yu Q; Chen W; Xing J; Chen C; Tian R
    J Proteomics; 2018 Mar; 174():9-16. PubMed ID: 29278786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Biomarker Discovery in Non-depleted Serum by Spectral Library-Based Data-Independent Acquisition Mass Spectrometry.
    Kraut A; Louwagie M; Bruley C; Masselon C; Couté Y; Brun V; Hesse AM
    Methods Mol Biol; 2019; 1959():129-150. PubMed ID: 30852820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PASS-DIA: A Data-Independent Acquisition Approach for Discovery Studies.
    Mun DG; Renuse S; Saraswat M; Madugundu A; Udainiya S; Kim H; Park SR; Zhao H; Nirujogi RS; Na CH; Kannan N; Yates JR; Lee SW; Pandey A
    Anal Chem; 2020 Nov; 92(21):14466-14475. PubMed ID: 33079518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results.
    Fernández-Costa C; Martínez-Bartolomé S; McClatchy DB; Saviola AJ; Yu NK; Yates JR
    J Proteome Res; 2020 Aug; 19(8):3153-3161. PubMed ID: 32510229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Cancer Biomarker Discovery Using DIA-MS Proteomic Analysis of EVs from Peripheral Blood.
    Espejo C; Lyons B; Woods GM; Wilson R
    Methods Mol Biol; 2023; 2628():127-152. PubMed ID: 36781783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein Contaminants Matter: Building Universal Protein Contaminant Libraries for DDA and DIA Proteomics.
    Frankenfield AM; Ni J; Ahmed M; Hao L
    J Proteome Res; 2022 Sep; 21(9):2104-2113. PubMed ID: 35793413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sample Fractionation Techniques for CSF Peptide Spectral Library Generation.
    Pacharra S; Marcus K; May C
    Methods Mol Biol; 2019; 2044():69-77. PubMed ID: 31432407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Analyses of Data Independent Acquisition Mass Spectrometric Approaches: DIA, WiSIM-DIA, and Untargeted DIA.
    Koopmans F; Ho JTC; Smit AB; Li KW
    Proteomics; 2018 Jan; 18(1):. PubMed ID: 29134766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.
    Srinivasan A; Sing JC; Gingras AC; Röst HL
    J Proteome Res; 2022 Aug; 21(8):1789-1799. PubMed ID: 35877786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Prostate Fluid-Based Spectral Libraries for Enhanced Protein Detection in Urine.
    Ha A; Khoo A; Ignatchenko V; Khan S; Waas M; Vesprini D; Liu SK; Nyalwidhe JO; Semmes OJ; Boutros PC; Kislinger T
    J Proteome Res; 2024 May; 23(5):1768-1778. PubMed ID: 38580319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.