These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 3020730)

  • 1. Caffeine effects on cyclic AMP levels in the mouse embryonic limb and palate in vitro.
    Schreiner CM; Zimmerman EF; Wee EL; Scott WJ
    Teratology; 1986 Aug; 34(1):21-7. PubMed ID: 3020730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serotonin regulation of palatal cell motility and metabolism.
    Zimmerman EF; Clark RL; Ganguli S; Venkatasubramanian K
    J Craniofac Genet Dev Biol; 1983; 3(4):371-85. PubMed ID: 6319457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP inhibits the release of prostaglandins and arachidonic acid from cultures of mouse embryo palate mesenchyme cells.
    Chabot MC; Chepenik KP
    J Craniofac Genet Dev Biol; 1986; 6(3):223-34. PubMed ID: 2429981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of prostaglandins and cyclic AMP by cultured embryonic palate mesenchyme at various population densities.
    Greene RM; Lloyd MR; Jones J
    J Craniofac Genet Dev Biol; 1985; 5(4):373-84. PubMed ID: 3001128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Patterns of cyclic AMP-dependent protein kinase gene expression during ontogeny of the murine palate.
    Greene RM; Lloyd MR; Uberti M; Nugent P; Pisano MM
    J Cell Physiol; 1995 Jun; 163(3):431-40. PubMed ID: 7775586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catecholamine modulation of embryonic palate mesenchymal cell DNA synthesis.
    Pisano MM; Schneiderman MH; Greene RM
    J Cell Physiol; 1986 Jan; 126(1):84-92. PubMed ID: 3003122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secalonic acid D-induced changes in palatal cyclic AMP and cyclic GMP in developing mice.
    Eldeib MM; Reddy CS
    Teratology; 1988 Apr; 37(4):343-52. PubMed ID: 2839909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in craniofacial growth induced by isotretinoin (13-cis-retinoic acid) in mouse whole embryo and primary mesenchymal cell culture.
    Watanabe T; Goulding EH; Pratt RM
    J Craniofac Genet Dev Biol; 1988; 8(1):21-33. PubMed ID: 3209676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism. Agonist-induced changes in nucleotide synthesis and degradation.
    Meeker RB; Harden TK
    Mol Pharmacol; 1983 Mar; 23(2):384-92. PubMed ID: 6300648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conditions for maximal synthesis of cyclic AMP by mouse macrophages in response to beta-adrenergic stimulation.
    Welscher HD; Cruchaud A
    Eur J Immunol; 1978 Mar; 8(3):180-4. PubMed ID: 207533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Desensitization of catecholamine-stimulated adenylate cyclase and down-regulation of beta-adrenergic receptors in rat glioma C6 cells. Role of cyclic AMP and protein synthesis.
    Zaremba TG; Fishman PH
    Mol Pharmacol; 1984 Sep; 26(2):206-13. PubMed ID: 6207420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of glucagon and isoproterenol induced cyclic 3'-5' adenosine monophosphate production in adipocytes isolated from the inguinal adipose tissue of developing rats.
    Gaben AM; Jahchan T; Swierczewski W; Rosselin G
    J Dev Physiol; 1982 Feb; 4(1):75-83. PubMed ID: 6179979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of 5-fluorouracil on embryonic rat palate in vitro: fusion in the absence of proliferation.
    Abbott BD; Lau C; Buckalew AR; Logsdon TR; Setzer W; Zucker RM; Elstein KH; Kavlock RJ
    Teratology; 1993 Jun; 47(6):541-54. PubMed ID: 8367827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. External malformations in chick embryos following concomitant administration of methylxanthines and beta-adrenomimetic agents: 1. Gross pathologic features.
    Bruyere HJ; Fallon JF; Gilbert EF
    Teratology; 1983 Oct; 28(2):257-69. PubMed ID: 6139886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K; Pedone C; Brooker G
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forskolin, but not alcohol, counteracts desensitization of cyclic AMP accumulation to beta-adrenergic stimulation in rat parotid.
    Harper JF
    J Cyclic Nucleotide Protein Phosphor Res; 1983-1984; 9(6):401-14. PubMed ID: 6098598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental pattern of cAMP, adenyl cyclase, and cAMP phosphodiesterase in the palate, lung, and liver of the fetal mouse: alterations resulting from exposure to methylmercury at levels inhibiting palate closure.
    Olson FC; Massaro EJ
    Teratology; 1980 Oct; 22(2):155-66. PubMed ID: 6255623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic adenosine-3',5'-monophosphate alters hydrolysis of phospholipids by mouse embryo palate mesenchyme cells.
    Chabot MC; Chepenik KP
    J Craniofac Genet Dev Biol; 1987; 7(1):53-8. PubMed ID: 3036907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased cAMP as a positive inotropic factor for mammalian skeletal muscle in vitro.
    Reading SA; Murrant CL; Barclay JK
    Can J Physiol Pharmacol; 2003 Oct; 81(10):986-96. PubMed ID: 14608417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemolytic plaque formation by leukocytes in vitro. Control by vasoactive hormones.
    Melmon KL; Bourne HR; Weinstein Y; Shearer GM; Kram J; Bauminger S
    J Clin Invest; 1974 Jan; 53(1):13-21. PubMed ID: 4357609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.