These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Quasiparticle energies and band gaps in graphene nanoribbons. Yang L; Park CH; Son YW; Cohen ML; Louie SG Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426 [TBL] [Abstract][Full Text] [Related]
6. Quantum transport through a graphene nanoribbon-superconductor junction. Sun QF; Xie XC J Phys Condens Matter; 2009 Aug; 21(34):344204. PubMed ID: 21715779 [TBL] [Abstract][Full Text] [Related]
7. Transport properties of two finite armchair graphene nanoribbons. Rosales L; González JW Nanoscale Res Lett; 2013 Jan; 8(1):1. PubMed ID: 23279756 [TBL] [Abstract][Full Text] [Related]
8. Gate potential-controlled current switching in graphene Y-junctions. Araújo FRV; da Costa DR; Lima FN; Nascimento ACS; Pereira JM J Phys Condens Matter; 2021 Jul; 33(37):. PubMed ID: 34181594 [TBL] [Abstract][Full Text] [Related]
9. Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. Bilić A; Sanvito S J Phys Condens Matter; 2013 Jul; 25(27):275301. PubMed ID: 23765375 [TBL] [Abstract][Full Text] [Related]
10. Semiconducting states and transport in metallic armchair-edged graphene nanoribbons. Chen X; Wang H; Wan H; Song K; Zhou G J Phys Condens Matter; 2011 Aug; 23(31):315304. PubMed ID: 21778565 [TBL] [Abstract][Full Text] [Related]
11. Electron transport properties of graphene quantum dots with non-centro-symmetric Gaussian deformation. Poszwa A Sci Rep; 2022 Jun; 12(1):9908. PubMed ID: 35701530 [TBL] [Abstract][Full Text] [Related]
12. The effects of defects on the conductance of graphene nanoribbons. Gorjizadeh N; Farajian AA; Kawazoe Y Nanotechnology; 2009 Jan; 20(1):015201. PubMed ID: 19417243 [TBL] [Abstract][Full Text] [Related]
13. Electronic structure and transport of a carbon chain between graphene nanoribbon leads. Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839 [TBL] [Abstract][Full Text] [Related]
14. Ab initio electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function. Dahnovsky Y J Chem Phys; 2007 Jul; 127(1):014104. PubMed ID: 17627334 [TBL] [Abstract][Full Text] [Related]
15. Transport investigation of branched graphene nanoflakes. Kvashnin AG; Kvashnin DG; Kvashnina OP; Chernozatonskii LA Nanotechnology; 2015 Sep; 26(38):385705. PubMed ID: 26335844 [TBL] [Abstract][Full Text] [Related]
16. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
17. Non-coherent transport in carbon chains. Gorjizadeh N; Farajian AA; Kawazoe Y J Phys Condens Matter; 2011 Feb; 23(7):075301. PubMed ID: 21411880 [TBL] [Abstract][Full Text] [Related]
18. Density functional theory investigation of negative differential resistance and efficient spin filtering in niobium-doped armchair graphene nanoribbons. Kumar J; Nemade HB; Giri PK Phys Chem Chem Phys; 2017 Nov; 19(43):29685-29692. PubMed ID: 29085937 [TBL] [Abstract][Full Text] [Related]
19. Electronic spectrum of Kekulé patterned graphene considering second neighbor-interactions. Andrade E; Naumis GG; Carrillo-Bastos R J Phys Condens Matter; 2021 May; 33(22):. PubMed ID: 33730699 [TBL] [Abstract][Full Text] [Related]
20. Tight-binding Hamiltonian considering up to the third nearest neighbours for trans polyacetylene. Keshtan MAM; Esmaeilzadeh M J Phys Condens Matter; 2020 Jul; 32(28):285401. PubMed ID: 32155603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]