These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 30207447)
21. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles: Influencing factors, kinetics and mechanism. Liu Z; Gu C; Ye M; Bian Y; Cheng Y; Wang F; Yang X; Song Y; Jiang X J Hazard Mater; 2015 Nov; 298():328-37. PubMed ID: 26094061 [TBL] [Abstract][Full Text] [Related]
22. Enhanced solubilization and reductive degradation of 2,2',4,4'- tretrabromodiphenyl ether by PAC-Pd/Fe nanoparticles in the presence of surfactant. Li H; Huang G; Wang M Environ Sci Pollut Res Int; 2020 Feb; 27(5):5085-5096. PubMed ID: 31848954 [TBL] [Abstract][Full Text] [Related]
23. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Li A; Tai C; Zhao Z; Wang Y; Zhang Q; Jiang G; Hu J Environ Sci Technol; 2007 Oct; 41(19):6841-6. PubMed ID: 17969704 [TBL] [Abstract][Full Text] [Related]
24. Reductive Debromination of Polybrominated Diphenyl Ethers: Dependence on Br Number of the Br-Rich Phenyl Ring. Guo S; Zhu L; Majima T; Lei M; Tang H Environ Sci Technol; 2019 Apr; 53(8):4433-4439. PubMed ID: 30912444 [TBL] [Abstract][Full Text] [Related]
25. Predicting reductive debromination of polybrominated diphenyl ethers by nanoscale zerovalent iron and its implications for environmental risk assessment. Kim EJ; Kim JH; Kim JH; Bokare V; Chang YS Sci Total Environ; 2014 Feb; 470-471():1553-7. PubMed ID: 23928371 [TBL] [Abstract][Full Text] [Related]
26. Microbial bioavailability of 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) in natural sediments from major rivers of China. Zhu B; Xia X; Wu S; Lu X; Yin X Chemosphere; 2016 Jun; 153():386-93. PubMed ID: 27031801 [TBL] [Abstract][Full Text] [Related]
27. Efficient oxidative debromination of decabromodiphenyl ether by TiO2-mediated photocatalysis in aqueous environment. Huang A; Wang N; Lei M; Zhu L; Zhang Y; Lin Z; Yin D; Tang H Environ Sci Technol; 2013 Jan; 47(1):518-25. PubMed ID: 23199337 [TBL] [Abstract][Full Text] [Related]
28. Photoreductive debromination of decabromodiphenyl ethers in the presence of carboxylates under visible light irradiation. Sun C; Chang W; Ma W; Chen C; Zhao J Environ Sci Technol; 2013 Mar; 47(5):2370-7. PubMed ID: 23383645 [TBL] [Abstract][Full Text] [Related]
29. Complete debromination of tetra- and penta-brominated diphenyl ethers by a coculture consisting of dehalococcoides and desulfovibrio species. Lee LK; Ding C; Yang KL; He J Environ Sci Technol; 2011 Oct; 45(19):8475-82. PubMed ID: 21859110 [TBL] [Abstract][Full Text] [Related]
30. Bioaccessibility of BDE 47 in a simulated gastrointestinal system and its metabolic transformation mechanisms in Caco-2 cells. Chen G; Jiang X; Gu C; Sun C; Li M Chemosphere; 2019 Jan; 214():408-417. PubMed ID: 30268896 [TBL] [Abstract][Full Text] [Related]
31. Highly efficient debromination of 4,4'-dibrominated diphenyl ether by organic palygorskite-supported Pd/Fe nanoparticles. Shao J; Zhang Y; Liu Z; Fei Z; Sun Y; Chen Z; Wen X; Shi W; Wang D; Gu C Environ Sci Pollut Res Int; 2022 Jan; 29(3):4461-4473. PubMed ID: 34405333 [TBL] [Abstract][Full Text] [Related]
32. Gastrointestinal absorption, metabolic debromination, and hydroxylation of three commercial polybrominated diphenyl ether mixtures by common carp. Zeng YH; Luo XJ; Chen HS; Yu LH; Chen SJ; Mai BX Environ Toxicol Chem; 2012 Apr; 31(4):731-8. PubMed ID: 22170638 [TBL] [Abstract][Full Text] [Related]
33. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy. Luo S; Yang S; Sun C; Gu JD Sci Total Environ; 2012 Jul; 429():300-8. PubMed ID: 22595555 [TBL] [Abstract][Full Text] [Related]
35. Complete debromination of decabromodiphenyl ether using the integration of Dehalococcoides sp. strain CBDB1 and zero-valent iron. Xu G; Wang J; Lu M Chemosphere; 2014 Dec; 117():455-61. PubMed ID: 25217713 [TBL] [Abstract][Full Text] [Related]
36. Species-specific and structure-dependent debromination of polybrominated diphenyl ether in fish by in vitro hepatic metabolism. Luo YL; Luo XJ; Ye MX; Zeng YH; Chen SJ; Mai BX Environ Toxicol Chem; 2017 Aug; 36(8):2005-2011. PubMed ID: 28135018 [TBL] [Abstract][Full Text] [Related]
37. Efficient photocatalytic degradation of tetrabromodiphenyl ethers and simultaneous hydrogen production by TiO Hu Z; Wang X; Dong H; Li S; Li X; Li L J Hazard Mater; 2017 Oct; 340():1-15. PubMed ID: 28711827 [TBL] [Abstract][Full Text] [Related]
38. Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system. Tokarz JA; Ahn MY; Leng J; Filley TR; Nies L Environ Sci Technol; 2008 Feb; 42(4):1157-64. PubMed ID: 18351087 [TBL] [Abstract][Full Text] [Related]
39. Probing the debromination of the flame retardant decabromodiphenyl ether in sediments of a boreal lake. Orihel DM; Bisbicos T; Darling CT; Dupuis AP; Williamson M; Muir DC Environ Toxicol Chem; 2016 Mar; 35(3):573-83. PubMed ID: 26332257 [TBL] [Abstract][Full Text] [Related]
40. Reaction of decabrominated diphenyl ether by zerovalent iron nanoparticles. Shih YH; Tai YT Chemosphere; 2010 Mar; 78(10):1200-6. PubMed ID: 20117822 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]