These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30207452)

  • 1. Distinct Mechanosensing of Human Neural Stem Cells on Extremely Limited Anisotropic Cellular Contact.
    Baek J; Cho SY; Kang H; Ahn H; Jung WB; Cho Y; Lee E; Cho SW; Jung HT; Im SG
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):33891-33900. PubMed ID: 30207452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons.
    Yang K; Jung H; Lee HR; Lee JS; Kim SR; Song KY; Cheong E; Bang J; Im SG; Cho SW
    ACS Nano; 2014 Aug; 8(8):7809-22. PubMed ID: 25050736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile Fabrication of High-Definition Hierarchical Wrinkle Structures for Investigating the Geometry-Sensitive Fate Commitment of Human Neural Stem Cells.
    Baek J; Jung WB; Cho Y; Lee E; Yun GT; Cho SY; Jung HT; Im SG
    ACS Appl Mater Interfaces; 2019 May; 11(19):17247-17255. PubMed ID: 31009192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electroconductive nanoscale topography for enhanced neuronal differentiation and electrophysiological maturation of human neural stem cells.
    Yang K; Yu SJ; Lee JS; Lee HR; Chang GE; Seo J; Lee T; Cheong E; Im SG; Cho SW
    Nanoscale; 2017 Dec; 9(47):18737-18752. PubMed ID: 29168523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene Oxide Hierarchical Patterns for the Derivation of Electrophysiologically Functional Neuron-like Cells from Human Neural Stem Cells.
    Yang K; Lee J; Lee JS; Kim D; Chang GE; Seo J; Cheong E; Lee T; Cho SW
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17763-74. PubMed ID: 27320202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells.
    Kang PH; Schaffer DV; Kumar S
    Mol Biol Cell; 2020 Mar; 31(5):386-396. PubMed ID: 31940260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells.
    Keung AJ; de Juan-Pardo EM; Schaffer DV; Kumar S
    Stem Cells; 2011 Nov; 29(11):1886-97. PubMed ID: 21956892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. YAP regulates cell mechanics by controlling focal adhesion assembly.
    Nardone G; Oliver-De La Cruz J; Vrbsky J; Martini C; Pribyl J; Skládal P; Pešl M; Caluori G; Pagliari S; Martino F; Maceckova Z; Hajduch M; Sanz-Garcia A; Pugno NM; Stokin GB; Forte G
    Nat Commun; 2017 May; 8():15321. PubMed ID: 28504269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells.
    Yang K; Jung K; Ko E; Kim J; Park KI; Kim J; Cho SW
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10529-40. PubMed ID: 23899585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradable Nanotopography Combined with Neurotrophic Signals Enhances Contact Guidance and Neuronal Differentiation of Human Neural Stem Cells.
    Yang K; Park E; Lee JS; Kim IS; Hong K; Park KI; Cho SW; Yang HS
    Macromol Biosci; 2015 Oct; 15(10):1348-56. PubMed ID: 26036788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of RhoA/ROCK signaling in contact guidance of bone-forming cells on anisotropic Ti6Al4V surfaces.
    Calzado-Martín A; Méndez-Vilas A; Multigner M; Saldaña L; González-Carrasco JL; González-Martín ML; Vilaboa N
    Acta Biomater; 2011 Apr; 7(4):1890-901. PubMed ID: 21115140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanosensitive stem cell fate choice is instructed by dynamic fluctuations in activation of Rho GTPases.
    Sampayo RG; Sakamoto M; Wang M; Kumar S; Schaffer DV
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2219854120. PubMed ID: 37216516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase.
    Teo BK; Wong ST; Lim CK; Kung TY; Yap CH; Ramagopal Y; Romer LH; Yim EK
    ACS Nano; 2013 Jun; 7(6):4785-98. PubMed ID: 23672596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focal adhesion and actin orientation regulated by cellular geometry determine stem cell differentiation via mechanotransduction.
    Wang X; Yang Y; Wang Y; Lu C; Hu X; Kawazoe N; Yang Y; Chen G
    Acta Biomater; 2024 Jul; 182():81-92. PubMed ID: 38734287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Computational Model of YAP/TAZ Mechanosensing.
    Sun M; Spill F; Zaman MH
    Biophys J; 2016 Jun; 110(11):2540-2550. PubMed ID: 27276271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Mechanosensitive Neural Stem Cell Differentiation.
    Rammensee S; Kang MS; Georgiou K; Kumar S; Schaffer DV
    Stem Cells; 2017 Feb; 35(2):497-506. PubMed ID: 27573749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of substrate microtopography on focal adhesion maturation and actin organization via the RhoA/ROCK pathway.
    Seo CH; Furukawa K; Montagne K; Jeong H; Ushida T
    Biomaterials; 2011 Dec; 32(36):9568-75. PubMed ID: 21925729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells.
    Maddala R; Reddy VN; Epstein DL; Rao V
    Mol Vis; 2003 Jul; 9():329-36. PubMed ID: 12876554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZRP-1 controls Rho GTPase-mediated actin reorganization by localizing at cell-matrix and cell-cell adhesions.
    Bai CY; Ohsugi M; Abe Y; Yamamoto T
    J Cell Sci; 2007 Aug; 120(Pt 16):2828-37. PubMed ID: 17652164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zyxin and actin structure confer anisotropic YAP mechanotransduction.
    Wen SM; Wen WC; Chao PG
    Acta Biomater; 2022 Oct; 152():313-320. PubMed ID: 36089236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.