These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 30207458)

  • 21. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition.
    Li X; Colombo L; Ruoff RS
    Adv Mater; 2016 Aug; 28(29):6247-52. PubMed ID: 26991960
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllable Fabrication of Graphene and Related Two-Dimensional Materials on Liquid Metals via Chemical Vapor Deposition.
    Zeng M; Fu L
    Acc Chem Res; 2018 Nov; 51(11):2839-2847. PubMed ID: 30222313
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Mass Production of CVD Graphene Films.
    Deng B; Liu Z; Peng H
    Adv Mater; 2019 Mar; 31(9):e1800996. PubMed ID: 30277604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanowire-Mesh-Templated Growth of Out-of-Plane Three-Dimensional Fuzzy Graphene.
    Garg R; Rastogi SK; Lamparski M; de la Barrera SC; Pace GT; Nuhfer NT; Hunt BM; Meunier V; Cohen-Karni T
    ACS Nano; 2017 Jun; 11(6):6301-6311. PubMed ID: 28549215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable Fabrication of Large-Area Wrinkled Graphene on a Solution Surface.
    Chen W; Gui X; Liang B; Liu M; Lin Z; Zhu Y; Tang Z
    ACS Appl Mater Interfaces; 2016 May; 8(17):10977-84. PubMed ID: 27111911
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene.
    Ago H; Ogawa Y; Tsuji M; Mizuno S; Hibino H
    J Phys Chem Lett; 2012 Aug; 3(16):2228-36. PubMed ID: 26295775
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of surface oxidation of Cu substrates on the growth kinetics of graphene by chemical vapor deposition.
    Chang RJ; Lee CH; Lee MK; Chen CW; Wen CY
    Nanoscale; 2017 Feb; 9(6):2324-2329. PubMed ID: 28134390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electronic and plasmonic phenomena at graphene grain boundaries.
    Fei Z; Rodin AS; Gannett W; Dai S; Regan W; Wagner M; Liu MK; McLeod AS; Dominguez G; Thiemens M; Castro Neto AH; Keilmann F; Zettl A; Hillenbrand R; Fogler MM; Basov DN
    Nat Nanotechnol; 2013 Nov; 8(11):821-5. PubMed ID: 24122082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu.
    Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W
    ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wafer-scale single-domain-like graphene by defect-selective atomic layer deposition of hexagonal ZnO.
    Park KS; Kim S; Kim H; Kwon D; Lee YE; Min SW; Im S; Choi HJ; Lim S; Shin H; Koo SM; Sung MM
    Nanoscale; 2015 Nov; 7(42):17702-9. PubMed ID: 26452020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.
    Lv R; Robinson JA; Schaak RE; Sun D; Sun Y; Mallouk TE; Terrones M
    Acc Chem Res; 2015 Jan; 48(1):56-64. PubMed ID: 25490673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quasi-periodic nanoripples in graphene grown by chemical vapor deposition and its impact on charge transport.
    Ni GX; Zheng Y; Bae S; Kim HR; Pachoud A; Kim YS; Tan CL; Im D; Ahn JH; Hong BH; Ozyilmaz B
    ACS Nano; 2012 Feb; 6(2):1158-64. PubMed ID: 22251076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System.
    Xu J; Hu J; Li Q; Wang R; Li W; Guo Y; Zhu Y; Liu F; Ullah Z; Dong G; Zeng Z; Liu L
    Small; 2017 Jul; 13(27):. PubMed ID: 28544765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct CVD Graphene Growth on Semiconductors and Dielectrics for Transfer-Free Device Fabrication.
    Wang H; Yu G
    Adv Mater; 2016 Jul; 28(25):4956-75. PubMed ID: 27122247
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition.
    Das S; Drucker J
    Nanotechnology; 2017 Mar; 28(10):105601. PubMed ID: 28084218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene.
    Huet B; Raskin JP
    Nanoscale; 2018 Nov; 10(46):21898-21909. PubMed ID: 30431636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in the Transfer of Graphene Films and Nanostructures.
    Gao Y; Chen J; Chen G; Fan C; Liu X
    Small Methods; 2021 Dec; 5(12):e2100771. PubMed ID: 34928026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Copper-Containing Carbon Feedstock for Growing Superclean Graphene.
    Jia K; Zhang J; Lin L; Li Z; Gao J; Sun L; Xue R; Li J; Kang N; Luo Z; Rummeli MH; Peng H; Liu Z
    J Am Chem Soc; 2019 May; 141(19):7670-7674. PubMed ID: 31058498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure.
    Jang J; Son M; Chung S; Kim K; Cho C; Lee BH; Ham MH
    Sci Rep; 2015 Dec; 5():17955. PubMed ID: 26658923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.