These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 30207545)

  • 1. Correlations among morphology, composition, and photoelectrochemical water splitting properties of InGaN nanorods grown by molecular beam epitaxy.
    Xu Z; Zhang S; Gao F; Wen L; Yu Y; Li G
    Nanotechnology; 2018 Nov; 29(47):475603. PubMed ID: 30207545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the Ga/In flux ratio and crystallographic plane dependence of MBE self-assembled growth of InGaN nanorods on patterned sapphire substrates.
    Shen J; Yu Y; Wang J; Zheng Y; Gan Y; Li G
    Nanoscale; 2020 Feb; 12(6):4018-4029. PubMed ID: 32016230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of indium-assisted growth of (In)GaN nanorods: eliminating nanorod coalescence by indium-enhanced atomic migration.
    Xu Z; Yu Y; Han J; Wen L; Gao F; Zhang S; Li G
    Nanoscale; 2017 Nov; 9(43):16864-16870. PubMed ID: 29075717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic plane and topography-dependent growth of semipolar InGaN nanorods on patterned sapphire substrates by molecular beam epitaxy.
    Shen J; Zheng Y; Xu Z; Yu Y; Gao F; Zhang S; Gan Y; Li G
    Nanoscale; 2018 Nov; 10(46):21951-21959. PubMed ID: 30444225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of Ag Plasmonic Metal and WO
    Gelija D; Loka C; Goddati M; Bak NH; Lee J; Kim MD
    ACS Appl Mater Interfaces; 2023 Jul; 15(29):34883-34894. PubMed ID: 37452743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive model toward optimization of SAG In-rich InGaN nanorods by hydride vapor phase epitaxy.
    Hijazi H; Zeghouane M; Jridi J; Gil E; Castelluci D; Dubrovskii VG; Bougerol C; André Y; Trassoudaine A
    Nanotechnology; 2021 Apr; 32(15):155601. PubMed ID: 33434893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen passivation: a proficient strategy to enhance the optical and photoelectrochemical performance of InGaN/GaN single-quantum-well nanorods.
    Reddeppa M; Park BG; Majumder S; Kim YH; Oh JE; Kim SG; Kim D; Kim MD
    Nanotechnology; 2020 Nov; 31(47):475201. PubMed ID: 32629439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Efficient InGaN Nanorods Photoelectrode by Constructing Z-scheme Charge Transfer System for Unbiased Water Splitting.
    Lin J; Zhang Z; Chai J; Cao B; Deng X; Wang W; Liu X; Li G
    Small; 2021 Jan; 17(3):e2006666. PubMed ID: 33350056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth, structural and optical properties of ternary InGaN nanorods prepared by selective-area metalorganic chemical vapor deposition.
    Song J; Leung B; Zhang Y; Han J
    Nanotechnology; 2014 Jun; 25(22):225602. PubMed ID: 24807561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments.
    Caccamo L; Cocco G; Martín G; Zhou H; Fundling S; Gad A; Mohajerani MS; Abdelfatah M; Estradé S; Peiró F; Dziony W; Bremers H; Hangleiter A; Mayrhofer L; Lilienkamp G; Moseler M; Daum W; Waag A
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8232-8. PubMed ID: 26953934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscopic Insights into InGaN/GaN Core-Shell Nanorods: Structure, Composition, and Luminescence.
    Müller M; Veit P; Krause FF; Schimpke T; Metzner S; Bertram F; Mehrtens T; Müller-Caspary K; Avramescu A; Strassburg M; Rosenauer A; Christen J
    Nano Lett; 2016 Sep; 16(9):5340-6. PubMed ID: 27517307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods.
    Lim JH; Lee SM; Kim HS; Kim HY; Park J; Jung SB; Park GC; Kim J; Joo J
    Sci Rep; 2017 Feb; 7():41992. PubMed ID: 28155879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Band engineered epitaxial 3D GaN-InGaN core-shell rod arrays as an advanced photoanode for visible-light-driven water splitting.
    Caccamo L; Hartmann J; Fàbrega C; Estradé S; Lilienkamp G; Prades JD; Hoffmann MW; Ledig J; Wagner A; Wang X; Lopez-Conesa L; Peiró F; Rebled JM; Wehmann HH; Daum W; Shen H; Waag A
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2235-40. PubMed ID: 24517402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broad Band Light Absorption and High Photocurrent of (In,Ga)N Nanowire Photoanodes Resulting from a Radial Stark Effect.
    Kamimura J; Bogdanoff P; Corfdir P; Brandt O; Riechert H; Geelhaar L
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34490-34496. PubMed ID: 27936545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D fluorescence confocal microscopy of InGaN/GaN multiple quantum well nanorods from a light absorption perspective.
    Gu Y; Liu YS; Yang G; Xie F; Zhu C; Yu Y; Zhang X; Lu N; Wang Y; Chen G
    Nanoscale Adv; 2021 May; 3(9):2649-2656. PubMed ID: 36134155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal length of ZnO nanorods for improving the light-extraction efficiency of blue InGaN light-emitting diodes.
    Jeong H; Salas-Montiel R; Jeong MS
    Opt Express; 2015 Sep; 23(18):23195-207. PubMed ID: 26368422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved solar hydrogen production by engineered doping of InGaN/GaN axial heterojunctions.
    Zhang H; Ebaid M; Tan J; Liu G; Min JW; Ng TK; Ooi BS
    Opt Express; 2019 Feb; 27(4):A81-A91. PubMed ID: 30876005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ti-doped α-Fe
    Yan D; Liu J; Shang Z; Luo H
    Dalton Trans; 2017 Aug; 46(32):10558-10563. PubMed ID: 28466901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.