These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 30207639)

  • 1. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Update on Formic Acid Dehydrogenation by Homogeneous Catalysis.
    Guan C; Pan Y; Zhang T; Ajitha MJ; Huang KW
    Chem Asian J; 2020 Apr; 15(7):937-946. PubMed ID: 32030903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Nanoparticle-Catalyzed Hydrogen Generation from Formic Acid.
    Li Z; Xu Q
    Acc Chem Res; 2017 Jun; 50(6):1449-1458. PubMed ID: 28525274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand.
    Pan Y; Pan CL; Zhang Y; Li H; Min S; Guo X; Zheng B; Chen H; Anders A; Lai Z; Zheng J; Huang KW
    Chem Asian J; 2016 May; 11(9):1357-60. PubMed ID: 27101381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts.
    Bernskoetter WH; Hazari N
    Acc Chem Res; 2017 Apr; 50(4):1049-1058. PubMed ID: 28306247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen storage in formic acid amine adducts.
    Boddien A; Gartner F; Mellmann D; Sponholz P; Junge H; Laurenczy G; Beller M
    Chimia (Aarau); 2011; 65(4):214-8. PubMed ID: 21678764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid.
    Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D
    Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes.
    Sponholz P; Mellmann D; Cordes C; Alsabeh PG; Li B; Li Y; Nielsen M; Junge H; Dixneuf P; Beller M
    ChemSusChem; 2014 Sep; 7(9):2419-22. PubMed ID: 25088665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directly Knitted Hierarchical Porous Organometallic Polymer-Based Self-Supported Single-Site Catalyst for CO
    Mandal T; Kumar A; Panda J; Kumar Dutta T; Choudhury J
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202314451. PubMed ID: 37874893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature.
    Prichatz C; Trincado M; Tan L; Casas F; Kammer A; Junge H; Beller M; Grützmacher H
    ChemSusChem; 2018 Sep; 11(18):3092-3095. PubMed ID: 30062851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst.
    Bielinski EA; Lagaditis PO; Zhang Y; Mercado BQ; Würtele C; Bernskoetter WH; Hazari N; Schneider S
    J Am Chem Soc; 2014 Jul; 136(29):10234-7. PubMed ID: 24999607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formic Acid as a Potential On-Board Hydrogen Storage Method: Development of Homogeneous Noble Metal Catalysts for Dehydrogenation Reactions.
    Guo J; Yin CK; Zhong DL; Wang YL; Qi T; Liu GH; Shen LT; Zhou QS; Peng ZH; Yao H; Li XB
    ChemSusChem; 2021 Jul; 14(13):2655-2681. PubMed ID: 33963668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change.
    Kothandaraman J; Czaun M; Goeppert A; Haiges R; Jones JP; May RB; Prakash GK; Olah GA
    ChemSusChem; 2015 Apr; 8(8):1442-51. PubMed ID: 25824142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protic NNN and NCN Pincer-Type Ruthenium Complexes Featuring (Trifluoromethyl)pyrazole Arms: Synthesis and Application to Catalytic Hydrogen Evolution from Formic Acid.
    Nakahara Y; Toda T; Matsunami A; Kayaki Y; Kuwata S
    Chem Asian J; 2018 Jan; 13(1):73-80. PubMed ID: 29140603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.