These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 30207684)
1. Developing Antibacterial Nanocrystalline Cellulose Using Natural Antibacterial Agents. Tavakolian M; Okshevsky M; van de Ven TGM; Tufenkji N ACS Appl Mater Interfaces; 2018 Oct; 10(40):33827-33838. PubMed ID: 30207684 [TBL] [Abstract][Full Text] [Related]
2. Effects of nisin and lysozyme on growth inhibition and biofilm formation capacity of Staphylococcus aureus strains isolated from raw milk and cheese samples. Sudagidan M; Yemenicioğlu A J Food Prot; 2012 Sep; 75(9):1627-33. PubMed ID: 22947470 [TBL] [Abstract][Full Text] [Related]
3. A Synergistic New Approach Toward Enhanced Antibacterial Efficacy via Antimicrobial Peptide Immobilization on a Nitric Oxide-Releasing Surface. Mondal A; Singha P; Douglass M; Estes L; Garren M; Griffin L; Kumar A; Handa H ACS Appl Mater Interfaces; 2021 Sep; 13(37):43892-43903. PubMed ID: 34516076 [TBL] [Abstract][Full Text] [Related]
4. Interfacial assembly at silver nanoparticle enhances the antibacterial efficacy of nisin. Arakha M; Borah SM; Saleem M; Jha AN; Jha S Free Radic Biol Med; 2016 Dec; 101():434-445. PubMed ID: 27845185 [TBL] [Abstract][Full Text] [Related]
5. Highly Absorbent Antibacterial and Biofilm-Disrupting Hydrogels from Cellulose for Wound Dressing Applications. Tavakolian M; Munguia-Lopez JG; Valiei A; Islam MS; Kinsella JM; Tufenkji N; van de Ven TGM ACS Appl Mater Interfaces; 2020 Sep; 12(36):39991-40001. PubMed ID: 32794770 [TBL] [Abstract][Full Text] [Related]
6. Preparation of extra-small nisin nanoparticles for enhanced antibacterial activity after autoclave treatment. Chang R; Lu H; Li M; Zhang S; Xiong L; Sun Q Food Chem; 2018 Apr; 245():756-760. PubMed ID: 29287437 [TBL] [Abstract][Full Text] [Related]
7. Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions. Godoy-Santos F; Pitts B; Stewart PS; Mantovani HC Microbiology (Reading); 2019 Jul; 165(7):761-771. PubMed ID: 31088602 [TBL] [Abstract][Full Text] [Related]
8. Antibacterial activity and long-term stable antibacterial performance of nisin grafted magnetic GO nanohybrids. Jiang L; Su C; Wen Y; Zhu Z; Liu J; He S; He S; Liu X; Shao W Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110809. PubMed ID: 32279808 [TBL] [Abstract][Full Text] [Related]
9. Characterization and long term antimicrobial activity of the nisin anchored cellulose films. Wu H; Teng C; Liu B; Tian H; Wang J Int J Biol Macromol; 2018 Jul; 113():487-493. PubMed ID: 29425865 [TBL] [Abstract][Full Text] [Related]
10. Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Qi X; Poernomo G; Wang K; Chen Y; Chan-Park MB; Xu R; Chang MW Nanoscale; 2011 Apr; 3(4):1874-80. PubMed ID: 21431164 [TBL] [Abstract][Full Text] [Related]
11. A Bioengineered Nisin Derivative To Control Streptococcus uberis Biofilms. Pérez-Ibarreche M; Field D; Ross RP; Hill C Appl Environ Microbiol; 2021 Jul; 87(16):e0039121. PubMed ID: 34105992 [TBL] [Abstract][Full Text] [Related]
12. Bio-active nanocomposite films based on nanocrystalline cellulose reinforced styrylquinoxalin-grafted-chitosan: Antibacterial and mechanical properties. Fardioui M; Meftah Kadmiri I; Qaiss AEK; Bouhfid R Int J Biol Macromol; 2018 Jul; 114():733-740. PubMed ID: 29588206 [TBL] [Abstract][Full Text] [Related]
13. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. Santos R; Gomes D; Macedo H; Barros D; Tibério C; Veiga AS; Tavares L; Castanho M; Oliveira M J Med Microbiol; 2016 Oct; 65(10):1092-1099. PubMed ID: 27498987 [TBL] [Abstract][Full Text] [Related]
14. Highly active nisin coated polycaprolactone electrospun fibers against both Staphylococcus aureus and Pseudomonas aeruginosa. Dart A; Sarviya N; Babaie A; Clare J; Bhave M; Sumer H; de Haan JB; Giri J; Kingshott P Biomater Adv; 2023 Nov; 154():213641. PubMed ID: 37804685 [TBL] [Abstract][Full Text] [Related]
15. Nisin and lysostaphin activity against preformed biofilm of Staphylococcus aureus involved in bovine mastitis. Ceotto-Vigoder H; Marques SL; Santos IN; Alves MD; Barrias ES; Potter A; Alviano DS; Bastos MC J Appl Microbiol; 2016 Jul; 121(1):101-14. PubMed ID: 26999597 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic Analysis of the Molecular Mechanisms Underlying the Antibacterial Activity of IONPs@pDA-Nisin Composites toward Alicyclobacillus acidoterrestris. Song Z; Niu C; Wu H; Wei J; Zhang Y; Yue T ACS Appl Mater Interfaces; 2019 Jun; 11(24):21874-21886. PubMed ID: 31185568 [TBL] [Abstract][Full Text] [Related]
17. The effect of MTADN on 10 Enterococcus faecalis isolates and biofilm: an in vitro study. Tong Z; Ling J; Lin Z; Li X; Mu Y J Endod; 2013 May; 39(5):674-8. PubMed ID: 23611389 [TBL] [Abstract][Full Text] [Related]
18. Stability and Antimicrobial Activity of Nisin-Loaded Mesoporous Silica Nanoparticles: A Game-Changer in the War against Maleficent Microbes. Behzadi F; Darouie S; Alavi SM; Shariati P; Singh G; Dolatshahi-Pirouz A; Arpanaei A J Agric Food Chem; 2018 Apr; 66(16):4233-4243. PubMed ID: 29621394 [TBL] [Abstract][Full Text] [Related]
19. Designing soluble soybean polysaccharides-based nanoparticles to improve sustained antimicrobial activity of nisin. Luo L; Wu Y; Liu C; Huang L; Zou Y; Shen Y; Lin Q Carbohydr Polym; 2019 Dec; 225():115251. PubMed ID: 31521298 [TBL] [Abstract][Full Text] [Related]
20. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Webber JL; Namivandi-Zangeneh R; Drozdek S; Wilk KA; Boyer C; Wong EHH; Bradshaw-Hajek BH; Krasowska M; Beattie DA Sci Rep; 2021 Jan; 11(1):1690. PubMed ID: 33462270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]