These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30207717)

  • 1. Evaluation of Variability in Greenhouse Gas Intensity of Canadian Oil Sands Surface Mining and Upgrading Operations.
    Sleep S; Laurenzi IJ; Bergerson JA; MacLean HL
    Environ Sci Technol; 2018 Oct; 52(20):11941-11951. PubMed ID: 30207717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistically Enhanced Model of In Situ Oil Sands Extraction Operations: An Evaluation of Variability in Greenhouse Gas Emissions.
    Orellana A; Laurenzi IJ; MacLean HL; Bergerson JA
    Environ Sci Technol; 2018 Feb; 52(3):947-954. PubMed ID: 29232120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels.
    Cai H; Brandt AR; Yeh S; Englander JG; Han J; Elgowainy A; Wang MQ
    Environ Sci Technol; 2015 Jul; 49(13):8219-27. PubMed ID: 26054375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.
    Pacheco DM; Bergerson JA; Alvarez-Majmutov A; Chen J; MacLean HL
    Environ Sci Technol; 2016 Dec; 50(24):13574-13584. PubMed ID: 27993083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.
    Bergerson JA; Kofoworola O; Charpentier AD; Sleep S; Maclean HL
    Environ Sci Technol; 2012 Jul; 46(14):7865-74. PubMed ID: 22667690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle greenhouse gas emissions of current oil sands technologies: GHOST model development and illustrative application.
    Charpentier AD; Kofoworola O; Bergerson JA; MacLean HL
    Environ Sci Technol; 2011 Nov; 45(21):9393-404. PubMed ID: 21919460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability and uncertainty in life cycle assessment models for greenhouse gas emissions from Canadian oil sands production.
    Brandt AR
    Environ Sci Technol; 2012 Jan; 46(2):1253-61. PubMed ID: 22191713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model to investigate energy and greenhouse gas emissions implications of refining petroleum: impacts of crude quality and refinery configuration.
    Abella JP; Bergerson JA
    Environ Sci Technol; 2012 Dec; 46(24):13037-47. PubMed ID: 23013493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unconventional Heavy Oil Growth and Global Greenhouse Gas Emissions.
    Nduagu EI; Gates ID
    Environ Sci Technol; 2015 Jul; 49(14):8824-32. PubMed ID: 26114481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Land use greenhouse gas emissions from conventional oil production and oil sands.
    Yeh S; Jordaan SM; Brandt AR; Turetsky MR; Spatari S; Keith DW
    Environ Sci Technol; 2010 Nov; 44(22):8766-72. PubMed ID: 20949948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Life Cycle Greenhouse Gas Emissions from Uranium Mining and Milling in Canada.
    Parker DJ; McNaughton CS; Sparks GA
    Environ Sci Technol; 2016 Sep; 50(17):9746-53. PubMed ID: 27471915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Greenhouse Gas Emissions of Western Canadian Natural Gas: Proposed Emissions Tracking for Life Cycle Modeling.
    Liu RE; Ravikumar AP; Bi XT; Zhang S; Nie Y; Brandt A; Bergerson JA
    Environ Sci Technol; 2021 Jul; 55(14):9711-9720. PubMed ID: 34254796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Criteria Air Pollutant and Greenhouse Gases Emissions from U.S. Refineries Allocated to Refinery Products.
    Sun P; Young B; Elgowainy A; Lu Z; Wang M; Morelli B; Hawkins T
    Environ Sci Technol; 2019 Jun; 53(11):6556-6569. PubMed ID: 31051076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse Gas Emission Evaluation of the GTL Pathway.
    Forman GS; Hahn TE; Jensen SD
    Environ Sci Technol; 2011 Oct; 45(20):9084-92. PubMed ID: 21936580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle greenhouse gas emissions and freshwater consumption associated with Bakken tight oil.
    Laurenzi IJ; Bergerson JA; Motazedi K
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):E7672-E7680. PubMed ID: 27849573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Embodied Energy and GHG Emissions from Material Use in Conventional and Unconventional Oil and Gas Operations.
    Brandt AR
    Environ Sci Technol; 2015 Nov; 49(21):13059-66. PubMed ID: 26421352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy efficiency and greenhouse gas emission intensity of petroleum products at U.S. refineries.
    Elgowainy A; Han J; Cai H; Wang M; Forman GS; DiVita VB
    Environ Sci Technol; 2014 Jul; 48(13):7612-24. PubMed ID: 24869918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COPTEM: A Model to Investigate the Factors Driving Crude Oil Pipeline Transportation Emissions.
    Choquette-Levy N; Zhong M; MacLean H; Bergerson J
    Environ Sci Technol; 2018 Jan; 52(1):337-345. PubMed ID: 29166006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life Cycle Analysis of Bitumen Transportation to Refineries by Rail and Pipeline.
    Nimana B; Verma A; Di Lullo G; Rahman MM; Canter CE; Olateju B; Zhang H; Kumar A
    Environ Sci Technol; 2017 Jan; 51(1):680-691. PubMed ID: 27977152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncertainty of oil field GHG emissions resulting from information gaps: a Monte Carlo approach.
    Vafi K; Brandt AR
    Environ Sci Technol; 2014 Sep; 48(17):10511-8. PubMed ID: 25110115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.