These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 30207784)
1. Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Guigni BA; Callahan DM; Tourville TW; Miller MS; Fiske B; Voigt T; Korwin-Mihavics B; Anathy V; Dittus K; Toth MJ Am J Physiol Cell Physiol; 2018 Nov; 315(5):C744-C756. PubMed ID: 30207784 [TBL] [Abstract][Full Text] [Related]
2. Electrical stimulation prevents doxorubicin-induced atrophy and mitochondrial loss in cultured myotubes. Guigni BA; Fix DK; Bivona JJ; Palmer BM; Carson JA; Toth MJ Am J Physiol Cell Physiol; 2019 Dec; 317(6):C1213-C1228. PubMed ID: 31532714 [TBL] [Abstract][Full Text] [Related]
3. Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. Braun TP; Szumowski M; Levasseur PR; Grossberg AJ; Zhu X; Agarwal A; Marks DL PLoS One; 2014; 9(9):e106489. PubMed ID: 25254959 [TBL] [Abstract][Full Text] [Related]
4. Preventing loss of sirt1 lowers mitochondrial oxidative stress and preserves C2C12 myotube diameter in an in vitro model of cancer cachexia. Hain BA; Kimball SR; Waning DL Physiol Rep; 2024 Jul; 12(13):e16103. PubMed ID: 38946587 [TBL] [Abstract][Full Text] [Related]
5. Role of Mitochondrial Dysfunction in the Pathogenesis of Cisplatin-Induced Myotube Atrophy. Matsumoto C; Sekine H; Nahata M; Mogami S; Ohbuchi K; Fujitsuka N; Takeda H Biol Pharm Bull; 2022 Jun; 45(6):780-792. PubMed ID: 35400696 [TBL] [Abstract][Full Text] [Related]
6. Chemotherapy-related cachexia is associated with mitochondrial depletion and the activation of ERK1/2 and p38 MAPKs. Barreto R; Waning DL; Gao H; Liu Y; Zimmers TA; Bonetto A Oncotarget; 2016 Jul; 7(28):43442-43460. PubMed ID: 27259276 [TBL] [Abstract][Full Text] [Related]
7. Long-term administration of the mitochondria-targeted antioxidant mitoquinone mesylate fails to attenuate age-related oxidative damage or rescue the loss of muscle mass and function associated with aging of skeletal muscle. Sakellariou GK; Pearson T; Lightfoot AP; Nye GA; Wells N; Giakoumaki II; Griffiths RD; McArdle A; Jackson MJ FASEB J; 2016 Nov; 30(11):3771-3785. PubMed ID: 27550965 [TBL] [Abstract][Full Text] [Related]
9. Chemotherapy triggers cachexia by deregulating synergetic function of histone-modifying enzymes. Amrute-Nayak M; Pegoli G; Holler T; Lopez-Davila AJ; Lanzuolo C; Nayak A J Cachexia Sarcopenia Muscle; 2021 Feb; 12(1):159-176. PubMed ID: 33305533 [TBL] [Abstract][Full Text] [Related]
10. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia. Sun R; Zhang S; Hu W; Lu X; Lou N; Yang Z; Chen S; Zhang X; Yang H Am J Physiol Cell Physiol; 2016 Jul; 311(1):C101-15. PubMed ID: 27122162 [TBL] [Abstract][Full Text] [Related]
11. Effects of conditioned media from murine lung cancer cells and human tumor cells on cultured myotubes. Guigni BA; van der Velden J; Kinsey CM; Carson JA; Toth MJ Am J Physiol Endocrinol Metab; 2020 Jan; 318(1):E22-E32. PubMed ID: 31689144 [TBL] [Abstract][Full Text] [Related]
12. Protective effects of Liuwei dihuang water extracts on diabetic muscle atrophy. Tseng YT; Chang WH; Lin CC; Chang FR; Wu PC; Lo YC Phytomedicine; 2019 Feb; 53():96-106. PubMed ID: 30668418 [TBL] [Abstract][Full Text] [Related]
13. Copper nanoclusters trigger muscle cell apoptosis and atrophy in vitro and in vivo. Liu Y; Liang J; Wang Q; He Y; Chen Y J Appl Toxicol; 2016 Mar; 36(3):454-63. PubMed ID: 26594009 [TBL] [Abstract][Full Text] [Related]
14. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Conte E; Bresciani E; Rizzi L; Cappellari O; De Luca A; Torsello A; Liantonio A Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32069876 [TBL] [Abstract][Full Text] [Related]
15. MitoQ and CoQ10 supplementation mildly suppresses skeletal muscle mitochondrial hydrogen peroxide levels without impacting mitochondrial function in middle-aged men. Pham T; MacRae CL; Broome SC; D'souza RF; Narang R; Wang HW; Mori TA; Hickey AJR; Mitchell CJ; Merry TL Eur J Appl Physiol; 2020 Jul; 120(7):1657-1669. PubMed ID: 32458156 [TBL] [Abstract][Full Text] [Related]
16. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Constantinou C; Fontes de Oliveira CC; Mintzopoulos D; Busquets S; He J; Kesarwani M; Mindrinos M; Rahme LG; Argilés JM; Tzika AA Int J Mol Med; 2011 Jan; 27(1):15-24. PubMed ID: 21069263 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria-targeted antioxidant supplementation improves 8 km time trial performance in middle-aged trained male cyclists. Broome SC; Braakhuis AJ; Mitchell CJ; Merry TL J Int Soc Sports Nutr; 2021 Aug; 18(1):58. PubMed ID: 34419082 [TBL] [Abstract][Full Text] [Related]
18. Cachexia induced by cancer and chemotherapy yield distinct perturbations to energy metabolism. Pin F; Barreto R; Couch ME; Bonetto A; O'Connell TM J Cachexia Sarcopenia Muscle; 2019 Feb; 10(1):140-154. PubMed ID: 30680954 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Abrigo J; Rivera JC; Simon F; Cabrera D; Cabello-Verrugio C Cell Signal; 2016 May; 28(5):366-376. PubMed ID: 26825874 [TBL] [Abstract][Full Text] [Related]
20. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. McClung JM; Judge AR; Powers SK; Yan Z Am J Physiol Cell Physiol; 2010 Mar; 298(3):C542-9. PubMed ID: 19955483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]