These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 30207964)
1. Digital Multiplierless Realization of Coupled Wilson Neuron Model. Imani MA; Ahmadi A; RadMalekshahi M; Haghiri S IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1431-1439. PubMed ID: 30207964 [TBL] [Abstract][Full Text] [Related]
2. Multiplierless Implementation of Noisy Izhikevich Neuron With Low-Cost Digital Design. Haghiri S; Zahedi A; Naderi A; Ahmadi A IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1422-1430. PubMed ID: 30188839 [TBL] [Abstract][Full Text] [Related]
3. FPGA Realization of Hodgkin-Huxley Neuronal Model. Shama F; Haghiri S; Imani MA IEEE Trans Neural Syst Rehabil Eng; 2020 May; 28(5):1059-1068. PubMed ID: 32175866 [TBL] [Abstract][Full Text] [Related]
4. Low Cost Digital Implementation of Hybrid FitzHugh Nagumo-Morris Lecar Neuron Model Considering Electromagnetic Flux Coupling. Majidifar S; Hayati M; Malekshahi MR; Abbott D IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1366-1374. PubMed ID: 36251896 [TBL] [Abstract][Full Text] [Related]
5. Investigation on the Wilson Neuronal Model: Optimized Approximation and Digital Multiplierless Implementation. Zhang G; Liu R; Ge Y; Mayet AM; Chan S; Li G; Nazemi E IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1181-1190. PubMed ID: 36219661 [TBL] [Abstract][Full Text] [Related]
6. Synchronization of Hindmarsh Rose Neurons. S A M; A H M Neural Netw; 2020 Mar; 123():372-380. PubMed ID: 31901566 [TBL] [Abstract][Full Text] [Related]
7. [Hardware Implementation of Numerical Simulation Function of Hodgkin-Huxley Model Neurons Action Potential Based on Field Programmable Gate Array]. Wang J; Lu M; Hu Y; Chen X; Pan Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Dec; 32(6):1302-9. PubMed ID: 27079105 [TBL] [Abstract][Full Text] [Related]
8. Efficient digital design of the nonlinear behavior of Hindmarsh-Rose neuron model in large-scale neural population. Nazari S; Jamshidi S Sci Rep; 2024 Feb; 14(1):3833. PubMed ID: 38360852 [TBL] [Abstract][Full Text] [Related]
9. Complete Neuron-Astrocyte Interaction Model: Digital Multiplierless Design and Networking Mechanism. Haghiri S; Ahmadi A; Saif M IEEE Trans Biomed Circuits Syst; 2017 Feb; 11(1):117-127. PubMed ID: 27662685 [TBL] [Abstract][Full Text] [Related]
10. An Optimization on the Neuronal Networks Based on the ADEX Biological Model in Terms of LUT-State Behaviors: Digital Design and Realization on FPGA Platforms. Wang Y; Taylan O; Alkabaa AS; Ahmad I; Tag-Eldin E; Nazemi E; Balubaid M; Alqabbaa HS Biology (Basel); 2022 Jul; 11(8):. PubMed ID: 36009754 [TBL] [Abstract][Full Text] [Related]
11. Event management for large scale event-driven digital hardware spiking neural networks. Caron LC; D'Haene M; Mailhot F; Schrauwen B; Rouat J Neural Netw; 2013 Sep; 45():83-93. PubMed ID: 23522624 [TBL] [Abstract][Full Text] [Related]
12. Efficient hardware implementation of the subthalamic nucleus-external globus pallidus oscillation system and its dynamics investigation. Yang S; Wei X; Wang J; Deng B; Liu C; Yu H; Li H Neural Netw; 2017 Oct; 94():220-238. PubMed ID: 28806716 [TBL] [Abstract][Full Text] [Related]
13. Optimized Real-Time Biomimetic Neural Network on FPGA for Bio-hybridization. Khoyratee F; Grassia F; Saïghi S; Levi T Front Neurosci; 2019; 13():377. PubMed ID: 31068781 [TBL] [Abstract][Full Text] [Related]
14. A Digital Realization of Astrocyte and Neural Glial Interactions. Hayati M; Nouri M; Haghiri S; Abbott D IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):518-29. PubMed ID: 26390499 [TBL] [Abstract][Full Text] [Related]
15. The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networks. Rostro-Gonzalez H; Cessac B; Girau B; Torres-Huitzil C J Physiol Paris; 2011; 105(1-3):91-7. PubMed ID: 21964248 [TBL] [Abstract][Full Text] [Related]
16. A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Nazari S; Faez K; Amiri M; Karami E Neural Netw; 2015 Jun; 66():79-90. PubMed ID: 25814323 [TBL] [Abstract][Full Text] [Related]
17. Asynchronous cellular automaton-based neuron: theoretical analysis and on-FPGA learning. Matsubara T; Torikai H IEEE Trans Neural Netw Learn Syst; 2013 May; 24(5):736-48. PubMed ID: 24808424 [TBL] [Abstract][Full Text] [Related]
18. Design of silicon brains in the nano-CMOS era: spiking neurons, learning synapses and neural architecture optimization. Cassidy AS; Georgiou J; Andreou AG Neural Netw; 2013 Sep; 45():4-26. PubMed ID: 23886551 [TBL] [Abstract][Full Text] [Related]
19. Hardware implementation of stochastic spiking neural networks. Rosselló JL; Canals V; Morro A; Oliver A Int J Neural Syst; 2012 Aug; 22(4):1250014. PubMed ID: 22830964 [TBL] [Abstract][Full Text] [Related]
20. Floating-Point Approximation Enabling Cost-Effective and High-Precision Digital Implementation of FitzHugh-Nagumo Neural Networks. Zuo Y; Ning N; Qiao GC; Wu JH; Bao JH; Zhang XY; Bai J; Wu FH; Liu Y; Yu Q; Hu SG IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):347-360. PubMed ID: 37878421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]