BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30207992)

  • 1. Improved adsorption of Congo red by nanostructured flower-like Fe(II)-Fe(III) hydroxy complex.
    Sun X; Liu Z; Zheng Z; Yu H; Zeng D
    Water Sci Technol; 2018 Sep; 78(3-4):506-514. PubMed ID: 30207992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles.
    Afkhami A; Moosavi R
    J Hazard Mater; 2010 Feb; 174(1-3):398-403. PubMed ID: 19819070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of algal biorefinery waste and waste office paper in the development of xerogels: A low cost and eco-friendly biosorbent for the effective removal of congo red and Fe (II) from aqueous solutions.
    Fawzy MA; Gomaa M
    J Environ Manage; 2020 May; 262():110380. PubMed ID: 32250831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution.
    Paşka O; Ianoş R; Păcurariu C; Brădeanu A
    Water Sci Technol; 2014; 69(6):1234-40. PubMed ID: 24647189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water.
    Abukhadra MR; Adlii A; Bakry BM
    Int J Biol Macromol; 2019 Apr; 126():402-413. PubMed ID: 30593802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neutral - Eradication of As (III) and Congo red (CR) with green iron oxide (GIO) loaded chitosan(C) - (C - GIO) beads by a non - thermal plasma jet via potential study.
    Shaik AM; Choi EH
    Chemosphere; 2023 Oct; 337():139363. PubMed ID: 37422214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous iron sulfide nanowires as an efficient adsorbent for toxic dye effluents remediation.
    Gadisa BT; Appiah-Ntiamoah R; Kim H
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2734-2746. PubMed ID: 30484050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of Cr(VI) reduction by carbonate green rust.
    Williams AG; Scherer MM
    Environ Sci Technol; 2001 Sep; 35(17):3488-94. PubMed ID: 11563651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated adsorption-solar photocatalytic membrane reactor for degradation of hazardous Congo red using Fe-doped ZnO and Fe-doped ZnO/rGO nanocomposites.
    Ong CB; Mohammad AW; Ng LY
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33856-33869. PubMed ID: 29943245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.
    Yu L; Xue W; Cui L; Xing W; Cao X; Li H
    Int J Biol Macromol; 2014 Mar; 64():233-9. PubMed ID: 24333392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse performances for Pb(II) adsorption by in situ formed Fe(III) oxyhydroxide derived from ferrate(VI) reduction and ferrous oxidation.
    Lan B; Hao C; Zhang M; Yan X
    Environ Sci Pollut Res Int; 2023 Jul; 30(31):77488-77498. PubMed ID: 37256407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New chelate-forming polymer microspheres carrying dyes as chelators for iron overload.
    Denizli A; Salih B; Piskin E
    J Biomater Sci Polym Ed; 1998; 9(2):175-87. PubMed ID: 9493844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-oxidation of As(III) and Fe(II) by oxygen through complexation between As(III) and Fe(II)/Fe(III) species.
    Ding W; Xu J; Chen T; Liu C; Li J; Wu F
    Water Res; 2018 Oct; 143():599-607. PubMed ID: 30025352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depassivation of aged Fe0 by ferrous ions: implications to contaminant degradation.
    Liu T; Li X; Waite TD
    Environ Sci Technol; 2013 Dec; 47(23):13712-20. PubMed ID: 24195471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction.
    Crosby HA; Johnson CM; Roden EE; Beard BL
    Environ Sci Technol; 2005 Sep; 39(17):6698-704. PubMed ID: 16190229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra-high arsenic adsorption by graphene oxide iron nanohybrid: Removal mechanisms and potential applications.
    Das TK; Sakthivel TS; Jeyaranjan A; Seal S; Bezbaruah AN
    Chemosphere; 2020 Aug; 253():126702. PubMed ID: 32302903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of cellulose acetate/chitosan/SWCNT/Fe
    ZabihiSahebi A; Koushkbaghi S; Pishnamazi M; Askari A; Khosravi R; Irani M
    Int J Biol Macromol; 2019 Nov; 140():1296-1304. PubMed ID: 31465804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile template-free fabrication of hollow nestlike α-Fe₂O₃ nanostructures for water treatment.
    Wei Z; Xing R; Zhang X; Liu S; Yu H; Li P
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):598-604. PubMed ID: 23131138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions.
    Zhang G; Ren Z; Zhang X; Chen J
    Water Res; 2013 Aug; 47(12):4022-31. PubMed ID: 23571113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhance antimony adsorption from aquatic environment by microwave-assisted prepared Fe
    Yu SH; Wang Y; Wan YY; Guo JK
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94401-94413. PubMed ID: 37531060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.