BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30208028)

  • 1. Vocal practice regulates singing activity-dependent genes underlying age-independent vocal learning in songbirds.
    Hayase S; Wang H; Ohgushi E; Kobayashi M; Mori C; Horita H; Mineta K; Liu WC; Wada K
    PLoS Biol; 2018 Sep; 16(9):e2006537. PubMed ID: 30208028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diurnal oscillation of vocal development associated with clustered singing by juvenile songbirds.
    Ohgushi E; Mori C; Wada K
    J Exp Biol; 2015 Jul; 218(Pt 14):2260-8. PubMed ID: 26034125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal regulation of singing-driven gene expression associated with song plasticity in the canary, an open-ended vocal learner.
    Hayase S; Shao C; Kobayashi M; Mori C; Liu WC; Wada K
    Mol Brain; 2021 Oct; 14(1):160. PubMed ID: 34715888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Singing activity-driven Arc expression associated with vocal acoustic plasticity in juvenile songbird.
    Hayase S; Wada K
    Eur J Neurosci; 2018 Jul; 48(2):1728-1742. PubMed ID: 29935048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental patterns of NMDAR expression within the song system do not recur during adult vocal plasticity in zebra finches.
    Scott LL; Singh TD; Nordeen EJ; Nordeen KW
    J Neurobiol; 2004 Mar; 58(4):442-54. PubMed ID: 14978722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Audition-independent vocal crystallization associated with intrinsic developmental gene expression dynamics.
    Mori C; Wada K
    J Neurosci; 2015 Jan; 35(3):878-89. PubMed ID: 25609608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches.
    James LS; Sakata JT
    Brain Res; 2019 Oct; 1721():146336. PubMed ID: 31310739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential developmental changes in cortical representations of auditory-vocal stimuli in songbirds.
    Yuan RC; Bottjer SW
    J Neurophysiol; 2019 Feb; 121(2):530-548. PubMed ID: 30540540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesions of a telencephalic nucleus in male zebra finches: Influences on vocal behavior in juveniles and adults.
    Foster EF; Bottjer SW
    J Neurobiol; 2001 Feb; 46(2):142-65. PubMed ID: 11153015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying song bout production during zebra finch sensory-motor learning suggests a sensitive period for vocal practice.
    Johnson F; Soderstrom K; Whitney O
    Behav Brain Res; 2002 Apr; 131(1-2):57-65. PubMed ID: 11844572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experience- and Sex-Dependent Intrinsic Plasticity in the Zebra Finch Auditory Cortex during Song Memorization.
    Chen AN; Meliza CD
    J Neurosci; 2020 Mar; 40(10):2047-2055. PubMed ID: 31937558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Androgens and isolation from adult tutors differentially affect the development of songbird neurons critical to vocal plasticity.
    Livingston FS; Mooney R
    J Neurophysiol; 2001 Jan; 85(1):34-42. PubMed ID: 11152703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation between extension of the sensitive period for avian vocal learning and dendritic spine loss in the song nucleus lMAN.
    Heinrich JE; Nordeen KW; Nordeen EJ
    Neurobiol Learn Mem; 2005 Mar; 83(2):143-50. PubMed ID: 15721798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age and experience affect the recruitment of new neurons to the song system of zebra finches during the sensitive period for song learning: ditto for vocal learning in humans?
    Wilbrecht L; Nottebohm F
    Ann N Y Acad Sci; 2004 Jun; 1021():404-9. PubMed ID: 15251918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of topography within song control circuitry of zebra finches during the sensitive period for song learning.
    Iyengar S; Viswanathan SS; Bottjer SW
    J Neurosci; 1999 Jul; 19(14):6037-57. PubMed ID: 10407041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Daily singing of adult songbirds functions to maintain song performance independently of auditory feedback and age.
    Mizuguchi D; Sánchez-Valpuesta M; Kim Y; Dos Santos EB; Kang H; Mori C; Wada K; Kojima S
    Commun Biol; 2024 May; 7(1):598. PubMed ID: 38762691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perineuronal nets and vocal plasticity in songbirds: A proposed mechanism to explain the difference between closed-ended and open-ended learning.
    Cornez G; Madison FN; Van der Linden A; Cornil C; Yoder KM; Ball GF; Balthazart J
    Dev Neurobiol; 2017 Sep; 77(8):975-994. PubMed ID: 28170164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vocal learning in songbirds requires cholinergic signaling in a motor cortex-like nucleus.
    Puzerey PA; Maher K; Prasad N; Goldberg JH
    J Neurophysiol; 2018 Oct; 120(4):1796-1806. PubMed ID: 29995601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds.
    Wang H; Sawai A; Toji N; Sugioka R; Shibata Y; Suzuki Y; Ji Y; Hayase S; Akama S; Sese J; Wada K
    PLoS Biol; 2019 Nov; 17(11):e3000476. PubMed ID: 31721761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FOS is induced by singing in distinct neuronal populations in a motor network.
    Kimpo RR; Doupe AJ
    Neuron; 1997 Feb; 18(2):315-25. PubMed ID: 9052801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.