BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 30208356)

  • 1. Automatic segmentation variability estimation with segmentation priors.
    Joskowicz L; Cohen D; Caplan N; Sosna J
    Med Image Anal; 2018 Dec; 50():54-64. PubMed ID: 30208356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inter-observer variability of manual contour delineation of structures in CT.
    Joskowicz L; Cohen D; Caplan N; Sosna J
    Eur Radiol; 2019 Mar; 29(3):1391-1399. PubMed ID: 30194472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic lung tumor segmentation with leaks removal in follow-up CT studies.
    Vivanti R; Joskowicz L; Karaaslan OA; Sosna J
    Int J Comput Assist Radiol Surg; 2015 Sep; 10(9):1505-14. PubMed ID: 25605297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.
    Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD
    Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung tumor segmentation methods: Impact on the uncertainty of radiomics features for non-small cell lung cancer.
    Owens CA; Peterson CB; Tang C; Koay EJ; Yu W; Mackin DS; Li J; Salehpour MR; Fuentes DT; Court LE; Yang J
    PLoS One; 2018; 13(10):e0205003. PubMed ID: 30286184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.
    Cheimariotis GA; Al-Mashat M; Haris K; Aletras AH; Jögi J; Bajc M; Maglaveras N; Heiberg E
    Ann Nucl Med; 2018 Feb; 32(2):94-104. PubMed ID: 29236220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of target volume segmentation accuracy and variability on treatment planning for 4D-CT-based non-small cell lung cancer radiotherapy.
    Martin S; Johnson C; Brophy M; Palma DA; Barron JL; Beauchemin SS; Louie AV; Yu E; Yaremko B; Ahmad B; Rodrigues GB; Gaede S
    Acta Oncol; 2015 Mar; 54(3):322-32. PubMed ID: 25350526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies.
    Vivanti R; Szeskin A; Lev-Cohain N; Sosna J; Joskowicz L
    Int J Comput Assist Radiol Surg; 2017 Nov; 12(11):1945-1957. PubMed ID: 28856515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study.
    Deeley MA; Chen A; Datteri R; Noble JH; Cmelak AJ; Donnelly EF; Malcolm AW; Moretti L; Jaboin J; Niermann K; Yang ES; Yu DS; Yei F; Koyama T; Ding GX; Dawant BM
    Phys Med Biol; 2011 Jul; 56(14):4557-77. PubMed ID: 21725140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of multi-atlas cardiac segmentation from thoracic planning CT in a probabilistic framework.
    Finnegan R; Dowling J; Koh ES; Tang S; Otton J; Delaney G; Batumalai V; Luo C; Atluri P; Satchithanandha A; Thwaites D; Holloway L
    Phys Med Biol; 2019 Apr; 64(8):085006. PubMed ID: 30856618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic quantification of epicardial fat volume on non-enhanced cardiac CT scans using a multi-atlas segmentation approach.
    Shahzad R; Bos D; Metz C; Rossi A; Kirisli H; van der Lugt A; Klein S; Witteman J; de Feyter P; Niessen W; van Vliet L; van Walsum T
    Med Phys; 2013 Sep; 40(9):091910. PubMed ID: 24007161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PET segmentation of bulky tumors: Strategies and workflows to improve inter-observer variability.
    Pfaehler E; Burggraaff C; Kramer G; Zijlstra J; Hoekstra OS; Jalving M; Noordzij W; Brouwers AH; Stevenson MG; de Jong J; Boellaard R
    PLoS One; 2020; 15(3):e0230901. PubMed ID: 32226030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing inter-observer variability and interaction time of MR liver volumetry by combining automatic CNN-based liver segmentation and manual corrections.
    Chlebus G; Meine H; Thoduka S; Abolmaali N; van Ginneken B; Hahn HK; Schenk A
    PLoS One; 2019; 14(5):e0217228. PubMed ID: 31107915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of a semi-automated contrast-oriented algorithm for tumor segmentation in retrospectively gated PET images: phantom and clinical validation.
    Carles M; Fechter T; Nemer U; Nanko N; Mix M; Nestle U; Schaefer A
    Phys Med Biol; 2015 Dec; 60(24):9227-51. PubMed ID: 26576926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-observer Variability Analysis of Automatic Lung Delineation in Normal and Disease Patients.
    Saba L; Than JC; Noor NM; Rijal OM; Kassim RM; Yunus A; Ng CR; Suri JS
    J Med Syst; 2016 Jun; 40(6):142. PubMed ID: 27114353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue segmentation of head and neck CT images for treatment planning: a multiatlas approach combined with intensity modeling.
    Fortunati V; Verhaart RF; van der Lijn F; Niessen WJ; Veenland JF; Paulides MM; van Walsum T
    Med Phys; 2013 Jul; 40(7):071905. PubMed ID: 23822442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Framework for Automated Segmentation and Labeling of Homogeneous Versus Heterogeneous Lung Tumors in [
    Soufi M; Kamali-Asl A; Geramifar P; Rahmim A
    Mol Imaging Biol; 2017 Jun; 19(3):456-468. PubMed ID: 27770402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning-based automatic segmentation of arteriovenous malformations on contrast CT images in brain stereotactic radiosurgery.
    Wang T; Lei Y; Tian S; Jiang X; Zhou J; Liu T; Dresser S; Curran WJ; Shu HK; Yang X
    Med Phys; 2019 Jul; 46(7):3133-3141. PubMed ID: 31050804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.