These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30208432)

  • 1. A nonvisual eye tracker calibration method for video-based tracking.
    Harrar V; Le Trung W; Malienko A; Khan AZ
    J Vis; 2018 Sep; 18(9):13. PubMed ID: 30208432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validity of low-resolution eye-tracking to assess eye movements during a rapid number naming task: performance of the eyetribe eye tracker.
    Raynowska J; Rizzo JR; Rucker JC; Dai W; Birkemeier J; Hershowitz J; Selesnick I; Balcer LJ; Galetta SL; Hudson T
    Brain Inj; 2018; 32(2):200-208. PubMed ID: 29211506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for measuring gaze orientation in space in unrestrained head conditions.
    Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A system to measure the Optokinetic and Optomotor response in mice.
    Kretschmer F; Sajgo S; Kretschmer V; Badea TC
    J Neurosci Methods; 2015 Dec; 256():91-105. PubMed ID: 26279344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous recordings of human microsaccades and drifts with a contemporary video eye tracker and the search coil technique.
    McCamy MB; Otero-Millan J; Leigh RJ; King SA; Schneider RM; Macknik SL; Martinez-Conde S
    PLoS One; 2015; 10(6):e0128428. PubMed ID: 26035820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time visuomotor behavior and electrophysiology recording setup for use with humans and monkeys.
    de Haan MJ; Brochier T; Grün S; Riehle A; Barthélemy FV
    J Neurophysiol; 2018 Aug; 120(2):539-552. PubMed ID: 29718806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What to expect from your remote eye-tracker when participants are unrestrained.
    Niehorster DC; Cornelissen THW; Holmqvist K; Hooge ITC; Hessels RS
    Behav Res Methods; 2018 Feb; 50(1):213-227. PubMed ID: 28205131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A self-calibrating, camera-based eye tracker for the recording of rodent eye movements.
    Zoccolan D; Graham BJ; Cox DD
    Front Neurosci; 2010; 4():193. PubMed ID: 21152259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gazepath: An eye-tracking analysis tool that accounts for individual differences and data quality.
    van Renswoude DR; Raijmakers MEJ; Koornneef A; Johnson SP; Hunnius S; Visser I
    Behav Res Methods; 2018 Apr; 50(2):834-852. PubMed ID: 28593606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a high-speed stereoscopic eyetracker.
    Barsingerhorn AD; Boonstra FN; Goossens J
    Behav Res Methods; 2018 Dec; 50(6):2480-2497. PubMed ID: 29508237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of a mobile and a stationary video-based eye-tracker.
    Dowiasch S; Wolf P; Bremmer F
    Behav Res Methods; 2020 Apr; 52(2):667-680. PubMed ID: 31240632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing eye trackers by correlating their eye-metric data.
    Titz J; Scholz A; Sedlmeier P
    Behav Res Methods; 2018 Oct; 50(5):1853-1863. PubMed ID: 28879442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of Three Gaze-position Calibration Techniques in First Purkinje Image-based Eye Trackers.
    Ntodie M; Bharadwaj SR; Balaji S; Saunders KJ; Little JA
    Optom Vis Sci; 2019 Aug; 96(8):587-598. PubMed ID: 31318801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation into the verification of the Synapsys videonystagmography (VNG) Ulmer calibration system.
    Corless N; Goggins S
    Int J Audiol; 2014 Sep; 53(9):618-24. PubMed ID: 24725120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small eye movements cannot be reliably measured by video-based P-CR eye-trackers.
    Holmqvist K; Blignaut P
    Behav Res Methods; 2020 Oct; 52(5):2098-2121. PubMed ID: 32206998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of aging on post-saccadic oscillations.
    Mardanbegi D; Killick R; Xia B; Wilcockson T; Gellersen H; Sawyer P; Crawford TJ
    Vision Res; 2018 Feb; 143():1-8. PubMed ID: 29197475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000.
    Ehinger BV; Groß K; Ibs I; König P
    PeerJ; 2019; 7():e7086. PubMed ID: 31328028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of calibration method and eye physiology on eyetracking data quality.
    Nyström M; Andersson R; Holmqvist K; van de Weijer J
    Behav Res Methods; 2013 Mar; 45(1):272-88. PubMed ID: 22956394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Video-based head movement compensation for novel haploscopic eye-tracking apparatus.
    Irsch K; Ramey NA; Kurz A; Guyton DL; Ying HS
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1152-7. PubMed ID: 18978348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel haploscopic viewing apparatus with a three-axis eye tracker.
    Ramey NA; Ying HS; Irsch K; Müllenbroich MC; Vaswani R; Guyton DL
    J AAPOS; 2008 Oct; 12(5):498-503. PubMed ID: 18440260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.