These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The Effect of PCL Addition on 3D-Printable PLA/HA Composite Filaments for the Treatment of Bone Defects. Åkerlund E; Diez-Escudero A; Grzeszczak A; Persson C Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015563 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
5. Development of 3D-Printed Sulfated Chitosan Modified Bioresorbable Stents for Coronary Artery Disease. Qiu T; Jiang W; Yan P; Jiao L; Wang X Front Bioeng Biotechnol; 2020; 8():462. PubMed ID: 32509747 [TBL] [Abstract][Full Text] [Related]
6. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives. Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292 [TBL] [Abstract][Full Text] [Related]
7. Radial Compressive Property and the Proof-of-Concept Study for Realizing Self-expansion of 3D Printing Polylactic Acid Vascular Stents with Negative Poisson's Ratio Structure. Wu Z; Zhao J; Wu W; Wang P; Wang B; Li G; Zhang S Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30082593 [TBL] [Abstract][Full Text] [Related]
8. The Possibility of Interlocking Nail Fabrication from FFF 3D Printing PLA/PCL/HA Composites Coated by Local Silk Fibroin for Canine Bone Fracture Treatment. Pitjamit S; Thunsiri K; Nakkiew W; Wongwichai T; Pothacharoen P; Wattanutchariya W Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32231063 [TBL] [Abstract][Full Text] [Related]
9. Advances in the development of biodegradable coronary stents: A translational perspective. Zong J; He Q; Liu Y; Qiu M; Wu J; Hu B Mater Today Bio; 2022 Dec; 16():100368. PubMed ID: 35937578 [TBL] [Abstract][Full Text] [Related]
10. Development of three-dimensionally printed vascular stents of bioresorbable poly(l-lactide-co-caprolactone). Zhao J; Song G; Zhao Q; Feng H; Wang Y; Anderson JM; Zhao H; Liu Q J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):656-664. PubMed ID: 36420745 [TBL] [Abstract][Full Text] [Related]
11. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
12. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites. Romero-Araya P; Pino V; Nenen A; Cárdenas V; Pavicic F; Ehrenfeld P; Serandour G; Lisoni JG; Moreno-Villoslada I; Flores ME Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771361 [TBL] [Abstract][Full Text] [Related]
13. Bioabsorbable Polymeric Stent for the Treatment of Coarctation of the Aorta (CoA) in Children: A Methodology to Evaluate the Design and Mechanical Properties of PLA Polymer. Dos Santos FJ; Hernandez BA; Santos R; Machado M; Souza M; Capello Sousa EA; Andrade A Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374585 [TBL] [Abstract][Full Text] [Related]
14. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability. Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of 3D Printed Polylactic Acid/Polycaprolactone Nanocomposites with Favorable Thermo-Responsive Cyclic Shape Memory Effects, and Crystallization and Mechanical Properties. Liu H; Li C; Chen S; Chen P; Li J; Jian H; Guo G; Chen X; Zhu X; Wu J Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987315 [TBL] [Abstract][Full Text] [Related]
17. Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture. Caminero MÁ; Chacón JM; García-Plaza E; Núñez PJ; Reverte JM; Becar JP Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31060241 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration. Cheng CH; Shie MY; Lai YH; Foo NP; Lee MJ; Yao CH Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771286 [TBL] [Abstract][Full Text] [Related]
19. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies. Lin M; Firoozi N; Tsai CT; Wallace MB; Kang Y Acta Biomater; 2019 Jan; 83():119-129. PubMed ID: 30366130 [TBL] [Abstract][Full Text] [Related]
20. 3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Sousa AM; Amaro AM; Piedade AP Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]