These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30208639)

  • 1. Research Progress in Organic Photomultiplication Photodetectors.
    Shi L; Liang Q; Wang W; Zhang Y; Li G; Ji T; Hao Y; Cui Y
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30208639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material.
    Guo D; Xu Z; Yang D; Ma D; Tang B; Vadim A
    Nanoscale; 2020 Jan; 12(4):2648-2656. PubMed ID: 31939957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing sub-bandgap external quantum efficiency by photomultiplication for narrowband organic near-infrared photodetectors.
    Kublitski J; Fischer A; Xing S; Baisinger L; Bittrich E; Spoltore D; Benduhn J; Vandewal K; Leo K
    Nat Commun; 2021 Jul; 12(1):4259. PubMed ID: 34267210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Gain in Organic Photodetectors Using the Polymer with Singlet Open-Shell Ground State.
    Dang Q; Hu L; Yuan L; Miao X; Huang A; Su J; Wang J; Zhou Y; Chen X; Li Q; Li Z; Deng X
    Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312538. PubMed ID: 37843416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37,500%.
    Li L; Zhang F; Wang W; An Q; Wang J; Sun Q; Zhang M
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5890-7. PubMed ID: 25715745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large Photomultiplication by Charge-Self-Trapping for High-Response Quantum Dot Infrared Photodetectors.
    Xu K; Ke L; Dou H; Xu R; Zhou W; Wei Q; Sun X; Wang H; Wu H; Li L; Xue J; Chen B; Weng TC; Zheng L; Yu Y; Ning Z
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14783-14790. PubMed ID: 35290029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterojunction bilayers serving as a charge transporting interlayer reduce the dark current and enhance photomultiplication in organic shortwave infrared photodetectors.
    Shin C; Li N; Seo B; Eedugurala N; Azoulay JD; Ng TN
    Mater Horiz; 2022 Aug; 9(8):2172-2179. PubMed ID: 35642962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photomultiplication-Type Organic Photodetectors for Near-Infrared Sensing with High and Bias-Independent Specific Detectivity.
    Xing S; Kublitski J; Hänisch C; Winkler LC; Li TY; Kleemann H; Benduhn J; Leo K
    Adv Sci (Weinh); 2022 Mar; 9(7):e2105113. PubMed ID: 34994114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Highly Responsive Organic Image Sensor Based on a Two-Terminal Organic Photodetector with Photomultiplication.
    Wu YL; Fukuda K; Yokota T; Someya T
    Adv Mater; 2019 Oct; 31(43):e1903687. PubMed ID: 31495992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-gap zinc porphyrin as an efficient dopant for photomultiplication type photodetectors.
    Mone M; Yang K; Murto P; Zhang F; Wang E
    Chem Commun (Camb); 2020 Oct; 56(84):12769-12772. PubMed ID: 32966374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitive Photodetection with Photomultiplication Effect in an Interfacial Eu
    Ishii A; Sakai T; Takahashi R; Ogata S; Kondo K; Kondo T; Iwasawa D; Mizushima S; Yoshihara K; Hasegawa M
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5706-5713. PubMed ID: 29355008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-Layered Strategy for Broadband Photomultiplication-Type Organic Photodetectors and Achieving Narrowband Response in Violet, Red, and Near-Infrared Light.
    Liu M; Fan Q; Wang J; Lin F; Zhao Z; Yang K; Zhao X; Zhou Z; Jen AK; Zhang F
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45636-45643. PubMed ID: 36172726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Photomultiplication Improvement and Response Acceleration for High-Performance Lateral Polymer Photodetectors Based on Bulk Heterojunction.
    Shou M; Zhang Q; Xiong S; Han T; Zhou J; Zheng N; Xie Z; Liu L
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5293-5301. PubMed ID: 33492924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Broadband photomultiplication organic photodetectors.
    Liu MY; Wang J; Yang KX; Liu M; Zhao ZJ; Zhang FJ
    Phys Chem Chem Phys; 2021 Feb; 23(4):2923-2929. PubMed ID: 33480933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive Solution-Processed Broadband PbSe Photodetectors through Photomultiplication Effect.
    Zhu T; Zheng L; Yao X; Liu L; Huang F; Cao Y; Gong X
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9205-9212. PubMed ID: 30720266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible Narrowband Ultraviolet Photodetectors with Photomultiplication Based on Wide Band Gap Conjugated Polymer and Inorganic Nanoparticles.
    Zhang X; Zheng E; Esopi MR; Cai C; Yu Q
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24064-24074. PubMed ID: 29938490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Narrowband Photomultiplication Type Organic Photodetectors.
    Wang W; Zhang F; Du M; Li L; Zhang M; Wang K; Wang Y; Hu B; Fang Y; Huang J
    Nano Lett; 2017 Mar; 17(3):1995-2002. PubMed ID: 28165247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-blind ultraviolet narrowband photomultiplication-type organic photodetector with an ultrahigh external quantum efficiency of over 1 000 000.
    Guo D; Yang L; Zhao J; Li J; He G; Yang D; Wang L; Vadim A; Ma D
    Mater Horiz; 2021 Aug; 8(8):2293-2302. PubMed ID: 34846433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in Organic Photodetectors and their Applications.
    Ren H; Chen JD; Li YQ; Tang JX
    Adv Sci (Weinh); 2020 Jan; 8(1):2002418. PubMed ID: 33437578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Photomultiplication Photodiode with a 70 nm-Thick Active Layer Assisted by IDIC as an Efficient Molecular Sensitizer.
    Neethipathi DK; Ryu HS; Jang MS; Yoon S; Sim KM; Woo HY; Chung DS
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21211-21217. PubMed ID: 31141329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.