These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 30208650)

  • 1. The Presence of Cu Facilitates Adsorption of Tetracycline (TC) onto Water Hyacinth Roots.
    Lu X; Tang B; Zhang Q; Liu L; Fan R; Zhang Z
    Int J Environ Res Public Health; 2018 Sep; 15(9):. PubMed ID: 30208650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of Cu(II) in aqueous media by biosorption using water hyacinth roots as a biosorbent material.
    Zheng JC; Feng HM; Lam MH; Lam PK; Ding YW; Yu HQ
    J Hazard Mater; 2009 Nov; 171(1-3):780-5. PubMed ID: 19596517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Cu(II) on adsorption of tetracycline by natural zeolite: performance and mechanism.
    Guo X; Wang P; Li P; Zhang C
    Water Sci Technol; 2019 Jul; 80(1):164-172. PubMed ID: 31461433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of amino-Fe(III) functionalized mesoporous silica for synergistic adsorption of tetracycline and copper.
    Zhang Z; Liu H; Wu L; Lan H; Qu J
    Chemosphere; 2015 Nov; 138():625-32. PubMed ID: 26218342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequestration of precious and pollutant metals in biomass of cultured water hyacinth (Eichhornia crassipes).
    Newete SW; Erasmus BF; Weiersbye IM; Byrne MJ
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20805-20818. PubMed ID: 27475440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient and selective removal of tetracycline from aqueous solutions via adsorption onto Cu(II)-modified hierarchical ZSM-5.
    Fan S; Lv J; Ma Y; Chen Y
    Water Sci Technol; 2019 Mar; 79(6):1042-1050. PubMed ID: 31070584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective adsorption of tetracycline and copper(II) on ion-imprinted porous alginate microspheres: performance and potential mechanisms.
    Wu W; Gao X; Chen B; Meng G; Lian J; Xue F; Kong Q; Yang J
    Environ Sci Pollut Res Int; 2023 Oct; 30(48):105538-105555. PubMed ID: 37715034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of tetracycline on soil and sediment: effects of pH and the presence of Cu(II).
    Zhang Z; Sun K; Gao B; Zhang G; Liu X; Zhao Y
    J Hazard Mater; 2011 Jun; 190(1-3):856-62. PubMed ID: 21524843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of copper(II) ions from aqueous solution by modified bagasse.
    Jiang Y; Pang H; Liao B
    J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Tetracycline by Hydrous Ferric Oxide: Adsorption Kinetics, Isotherms, and Mechanism.
    Zang J; Wu T; Song H; Zhou N; Fan S; Xie Z; Tang J
    Int J Environ Res Public Health; 2019 Nov; 16(22):. PubMed ID: 31752348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(II) inhibited the transport of tetracycline in porous media: role of complexation.
    Xu C; Gong B; Zhao S; Sun XM; Wang SG; Song C
    Environ Sci Process Impacts; 2024 Aug; 26(8):1417-1428. PubMed ID: 39007296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products.
    Hanay O; Yıldız B; Aslan S; Hasar H
    Environ Sci Pollut Res Int; 2014 Mar; 21(5):3774-82. PubMed ID: 24281679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of copper on the removal of tetracycline from water by Myriophyllum aquaticum: Performance and mechanisms.
    Guo X; Wang P; Li Y; Zhong H; Li P; Zhang C; Zhao T
    Bioresour Technol; 2019 Nov; 291():121916. PubMed ID: 31377514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast removal of tetracycline from wastewater by reduced graphene oxide prepared via microwave-assisted ethylenediamine-N,N'-disuccinic acid induction method.
    Yuan X; Wu Z; Zhong H; Wang H; Chen X; Leng L; Jiang L; Xiao Z; Zeng G
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18657-71. PubMed ID: 27306211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Municipal landfill leachate treatment for metal removal using water hyacinth in a floating aquatic system.
    El-Gendy AS; Biswas N; Bewtra JK
    Water Environ Res; 2006 Sep; 78(9):951-64. PubMed ID: 17120455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient co-removal of copper and tetracycline from aqueous solution by using permanent magnetic cation exchange resin.
    Li Q; Ji M; Li X; Song H; Wang G; Qi C; Li A
    Bioresour Technol; 2019 Dec; 293():122068. PubMed ID: 31479856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of divalent copper on tetracycline degradation and the proposed transformation pathway.
    Zhu Y; Liu K; Muhammad Y; Zhang H; Tong Z; Yu B; Sahibzada M
    Environ Sci Pollut Res Int; 2020 Feb; 27(5):5155-5167. PubMed ID: 31845280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasound-assisted removal of tetracycline from aqueous solution by mesoporous alumina.
    Li H; Zhong X; Zhang H; Xiang L; Royer S; Valange S; Barrault J
    Water Sci Technol; 2014; 69(4):819-24. PubMed ID: 24569282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorption of tetracycline on organo-montmorillonites.
    Liu N; Wang MX; Liu MM; Liu F; Weng L; Koopal LK; Tan WF
    J Hazard Mater; 2012 Jul; 225-226():28-35. PubMed ID: 22609390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of tetracycline antibiotic from contaminated water media by multi-walled carbon nanotubes: operational variables, kinetics, and equilibrium studies.
    Babaei AA; Lima EC; Takdastan A; Alavi N; Goudarzi G; Vosoughi M; Hassani G; Shirmardi M
    Water Sci Technol; 2016; 74(5):1202-16. PubMed ID: 27642840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.