These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 30208652)

  • 1. The Role of Heavy Metals in Plant Response to Biotic Stress.
    Morkunas I; Woźniak A; Mai VC; Rucińska-Sobkowiak R; Jeandet P
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30208652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do toxic ions induce hormesis in plants?
    Poschenrieder C; Cabot C; Martos S; Gallego B; Barceló J
    Plant Sci; 2013 Nov; 212():15-25. PubMed ID: 24094050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.
    Schützendübel A; Polle A
    J Exp Bot; 2002 May; 53(372):1351-65. PubMed ID: 11997381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of hormesis in plants by urban trace metal pollution.
    Salinitro M; Mattarello G; Guardigli G; Odajiu M; Tassoni A
    Sci Rep; 2021 Oct; 11(1):20329. PubMed ID: 34645888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do heavy metals and metalloids influence the detoxification of organic xenobiotics in plants?
    Schröder P; Lyubenova L; Huber C
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):795-804. PubMed ID: 19462193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change driven plant-metal-microbe interactions.
    Rajkumar M; Prasad MN; Swaminathan S; Freitas H
    Environ Int; 2013 Mar; 53():74-86. PubMed ID: 23347948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can metals defend plants against biotic stress?
    Poschenrieder C; Tolrà R; Barceló J
    Trends Plant Sci; 2006 Jun; 11(6):288-95. PubMed ID: 16697693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of heavy metal accumulation ability in rainwater by 10 sponge city plant species.
    Ma W; Zhao B; Ma J
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26733-26747. PubMed ID: 31292879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Both heavy metal-amendment of soil and aphid-infestation increase Cd and Zn concentrations in phloem exudates of a metal-hyperaccumulating plant.
    Stolpe C; Giehren F; Krämer U; Müller C
    Phytochemistry; 2017 Jul; 139():109-117. PubMed ID: 28437705
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heavy metal stress can prime for herbivore-induced plant volatile emission.
    Winter TR; Borkowski L; Zeier J; Rostás M
    Plant Cell Environ; 2012 Jul; 35(7):1287-98. PubMed ID: 22321129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory.
    Nguyen D; Rieu I; Mariani C; van Dam NM
    Plant Mol Biol; 2016 Aug; 91(6):727-40. PubMed ID: 27095445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress.
    Nazir F; Fariduddin Q; Khan TA
    Chemosphere; 2020 Aug; 252():126486. PubMed ID: 32234629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Role of Metallic Trace Elements in Stress Biology-From Negative to Beneficial Impact on Plants.
    Muszyńska E; Labudda M
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31247908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breeding of mycoparasitic Trichoderma strains for heavy metal resistance.
    Kredics L; Antal Z; Manczinger L; Nagy E
    Lett Appl Microbiol; 2001 Aug; 33(2):112-6. PubMed ID: 11472517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications.
    Ferrol N; Tamayo E; Vargas P
    J Exp Bot; 2016 Dec; 67(22):6253-6265. PubMed ID: 27799283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review.
    Adrees M; Ali S; Rizwan M; Zia-Ur-Rehman M; Ibrahim M; Abbas F; Farid M; Qayyum MF; Irshad MK
    Ecotoxicol Environ Saf; 2015 Sep; 119():186-97. PubMed ID: 26004359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into Plant Programmed Cell Death Induced by Heavy Metals-Discovering a
    Sychta K; Słomka A; Kuta E
    Cells; 2021 Jan; 10(1):. PubMed ID: 33406697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.