BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30208655)

  • 1. Multi-Body Interactions in Molecular Docking Program Devised with Key Water Molecules in Protein Binding Sites.
    Xiao W; Wang D; Shen Z; Li S; Li H
    Molecules; 2018 Sep; 23(9):. PubMed ID: 30208655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular docking with ligand attached water molecules.
    Lie MA; Thomsen R; Pedersen CN; Schiøtt B; Christensen MH
    J Chem Inf Model; 2011 Apr; 51(4):909-17. PubMed ID: 21452852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-protein docking with water molecules.
    Roberts BC; Mancera RL
    J Chem Inf Model; 2008 Feb; 48(2):397-408. PubMed ID: 18211049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of various optimization algorithms of protein-ligand docking programs by fitness accuracy.
    Guo L; Yan Z; Zheng X; Hu L; Yang Y; Wang J
    J Mol Model; 2014 Jul; 20(7):2251. PubMed ID: 24935106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AutoDock-GIST: Incorporating Thermodynamics of Active-Site Water into Scoring Function for Accurate Protein-Ligand Docking.
    Uehara S; Tanaka S
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27886114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of MDockPP in CAPRI rounds 28-29 and 31-35 including the prediction of water-mediated interactions.
    Xu X; Qiu L; Yan C; Ma Z; Grinter SZ; Zou X
    Proteins; 2017 Mar; 85(3):424-434. PubMed ID: 27802576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization.
    Liu J; He X; Zhang JZ
    J Chem Inf Model; 2013 Jun; 53(6):1306-14. PubMed ID: 23651068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving protein-ligand docking with flexible interfacial water molecules using SWRosettaLigand.
    Li L; Xu W; Lü Q
    J Mol Model; 2015 Nov; 21(11):294. PubMed ID: 26515196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An accurate metalloprotein-specific scoring function and molecular docking program devised by a dynamic sampling and iteration optimization strategy.
    Bai F; Liao S; Gu J; Jiang H; Wang X; Li H
    J Chem Inf Model; 2015 Apr; 55(4):833-47. PubMed ID: 25746437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: the prediction accuracy of sampling power and scoring power.
    Wang Z; Sun H; Yao X; Li D; Xu L; Li Y; Tian S; Hou T
    Phys Chem Chem Phys; 2016 May; 18(18):12964-75. PubMed ID: 27108770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Docking ligands into flexible and solvated macromolecules. 3. Impact of input ligand conformation, protein flexibility, and water molecules on the accuracy of docking programs.
    Corbeil CR; Moitessier N
    J Chem Inf Model; 2009 Apr; 49(4):997-1009. PubMed ID: 19391631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of docking performance: comparative data on docking algorithms.
    Kontoyianni M; McClellan LM; Sokol GS
    J Med Chem; 2004 Jan; 47(3):558-65. PubMed ID: 14736237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical assessment of docking programs and scoring functions.
    Warren GL; Andrews CW; Capelli AM; Clarke B; LaLonde J; Lambert MH; Lindvall M; Nevins N; Semus SF; Senger S; Tedesco G; Wall ID; Woolven JM; Peishoff CE; Head MS
    J Med Chem; 2006 Oct; 49(20):5912-31. PubMed ID: 17004707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-protein cross-docking with water molecules.
    Thilagavathi R; Mancera RL
    J Chem Inf Model; 2010 Mar; 50(3):415-21. PubMed ID: 20158272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Evaluation of Covalent Docking Tools.
    Scarpino A; Ferenczy GG; Keserű GM
    J Chem Inf Model; 2018 Jul; 58(7):1441-1458. PubMed ID: 29890081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAsDock: a new approach for rapid flexible docking based on an improved multi-population genetic algorithm.
    Li H; Li C; Gui C; Luo X; Chen K; Shen J; Wang X; Jiang H
    Bioorg Med Chem Lett; 2004 Sep; 14(18):4671-6. PubMed ID: 15324886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.