These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30208897)

  • 1. "You can tell by the way I use my walk." Predicting the presence of cognitive load with gait measurements.
    Dasgupta P; VanSwearingen J; Sejdic E
    Biomed Eng Online; 2018 Sep; 17(1):122. PubMed ID: 30208897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classifying running speed conditions using a single wearable sensor: Optimal segmentation and feature extraction methods.
    Benson LC; Clermont CA; Osis ST; Kobsar D; Ferber R
    J Biomech; 2018 Apr; 71():94-99. PubMed ID: 29454542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of Parkinson's Disease Gait Using Spatial-Temporal Gait Features.
    Wahid F; Begg RK; Hass CJ; Halgamuge S; Ackland DC
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1794-802. PubMed ID: 26551989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Walking Protocols and Gait Assessment Systems for Machine Learning-Based Classification of Parkinson's Disease.
    Rehman RZU; Del Din S; Shi JQ; Galna B; Lord S; Yarnall AJ; Guan Y; Rochester L
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selection of gait parameters for differential diagnostics of patients with de novo Parkinson's disease.
    Djurić-Jovičić M; Belić M; Stanković I; Radovanović S; Kostić VS
    Neurol Res; 2017 Oct; 39(10):853-861. PubMed ID: 28715936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting freezing of gait with a tri-axial accelerometer in Parkinson's disease patients.
    Ahlrichs C; Samà A; Lawo M; Cabestany J; Rodríguez-Martín D; Pérez-López C; Sweeney D; Quinlan LR; Laighin GÒ; Counihan T; Browne P; Hadas L; Vainstein G; Costa A; Annicchiarico R; Alcaine S; Mestre B; Quispe P; Bayes À; Rodríguez-Molinero A
    Med Biol Eng Comput; 2016 Jan; 54(1):223-33. PubMed ID: 26429349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IMU-Based Classification of Parkinson's Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection.
    Caramia C; Torricelli D; Schmid M; Munoz-Gonzalez A; Gonzalez-Vargas J; Grandas F; Pons JL
    IEEE J Biomed Health Inform; 2018 Nov; 22(6):1765-1774. PubMed ID: 30106745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating bradykinesia severity in Parkinson's disease by analysing gait through a waist-worn sensor.
    Samà A; Pérez-López C; Rodríguez-Martín D; Català A; Moreno-Aróstegui JM; Cabestany J; de Mingo E; Rodríguez-Molinero A
    Comput Biol Med; 2017 May; 84():114-123. PubMed ID: 28351715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Multiple Regression Approach to Normalization of Spatiotemporal Gait Features.
    Wahid F; Begg R; Lythgo N; Hass CJ; Halgamuge S; Ackland DC
    J Appl Biomech; 2016 Apr; 32(2):128-39. PubMed ID: 26426798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning based classification of normal, slow and fast walking by extracting multimodal features from stride interval time series.
    Aziz W; Hussain L; Khan IR; Alowibdi JS; Alkinani MH
    Math Biosci Eng; 2020 Dec; 18(1):495-517. PubMed ID: 33525104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment effect analysis of the Frailty Care Bundle (FCB) in a cohort of patients in acute care settings.
    Crowe C; Naughton C; de Foubert M; Cummins H; McCullagh R; Skelton DA; Dahly D; Palmer B; O'Flynn B; Tedesco S
    Aging Clin Exp Res; 2024 Sep; 36(1):187. PubMed ID: 39254891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Backpack Strap Patterns on Gait Parameters in Young Adults at Self-Selected Normal and Fast Walking Speeds.
    Abaraogu UO; Ugwa WO; Nnodim O; Ezenwankwo EF
    PM R; 2017 Jul; 9(7):676-682. PubMed ID: 27780769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic machine-learning based identification of jogging periods from accelerometer measurements of adolescents under field conditions.
    Zdravevski E; Risteska Stojkoska B; Standl M; Schulz H
    PLoS One; 2017; 12(9):e0184216. PubMed ID: 28880923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using smartphone accelerometry to assess the relationship between cognitive load and gait dynamics during outdoor walking.
    Ho S; Mohtadi A; Daud K; Leonards U; Handy TC
    Sci Rep; 2019 Feb; 9(1):3119. PubMed ID: 30816292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective Fall-Risk Prediction Models for Older Adults Based on Wearable Sensors.
    Howcroft J; Kofman J; Lemaire ED
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1812-1820. PubMed ID: 28358689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the effects of pre-processing on extracted signal features from gait accelerometry signals.
    Millecamps A; Lowry KA; Brach JS; Perera S; Redfern MS; Sejdić E
    Comput Biol Med; 2015 Jul; 62():164-74. PubMed ID: 25935124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fall Risk Assessment in Stroke Survivors: A Machine Learning Model Using Detailed Motion Data from Common Clinical Tests and Motor-Cognitive Dual-Tasking.
    Abdollahi M; Rashedi E; Jahangiri S; Kuber PM; Azadeh-Fard N; Dombovy M
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task.
    Baghdadi A; Megahed FM; Esfahani ET; Cavuoto LA
    Ergonomics; 2018 Aug; 61(8):1116-1129. PubMed ID: 29452575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Method to Estimate Horse Speed per Stride from One IMU with a Machine Learning Method.
    Schmutz A; Chèze L; Jacques J; Martin P
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.