These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 30209131)
1. A cation-π interaction in a transmembrane helix of vacuolar ATPase retains the proton-transporting arginine in a hydrophobic environment. Hohlweg W; Wagner GE; Hofbauer HF; Sarkleti F; Setz M; Gubensäk N; Lichtenegger S; Falsone SF; Wolinski H; Kosol S; Oostenbrink C; Kohlwein SD; Zangger K J Biol Chem; 2018 Dec; 293(49):18977-18988. PubMed ID: 30209131 [TBL] [Abstract][Full Text] [Related]
2. Structure and localization of an essential transmembrane segment of the proton translocation channel of yeast H+-V-ATPase. Duarte AM; Wolfs CJ; van Nuland NA; Harrison MA; Findlay JB; van Mierlo CP; Hemminga MA Biochim Biophys Acta; 2007 Feb; 1768(2):218-27. PubMed ID: 16962559 [TBL] [Abstract][Full Text] [Related]
3. Membrane-bound peptides mimicking transmembrane Vph1p helix 7 of yeast V-ATPase: a spectroscopic and polarity mismatch study. Hesselink RW; Koehorst RB; Nazarov PV; Hemminga MA Biochim Biophys Acta; 2005 Oct; 1716(2):137-45. PubMed ID: 16257593 [TBL] [Abstract][Full Text] [Related]
4. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V Roh SH; Stam NJ; Hryc CF; Couoh-Cardel S; Pintilie G; Chiu W; Wilkens S Mol Cell; 2018 Mar; 69(6):993-1004.e3. PubMed ID: 29526695 [TBL] [Abstract][Full Text] [Related]
5. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance. Banerjee S; Clapp K; Tarsio M; Kane PM J Biol Chem; 2019 Jun; 294(23):9161-9171. PubMed ID: 31023825 [TBL] [Abstract][Full Text] [Related]
6. Defined sites of interaction between subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the stator structure of the vacuolar H+-ATPase. Jones RP; Durose LJ; Findlay JB; Harrison MA Biochemistry; 2005 Mar; 44(10):3933-41. PubMed ID: 15751969 [TBL] [Abstract][Full Text] [Related]
7. Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. Toei M; Toei S; Forgac M J Biol Chem; 2011 Oct; 286(40):35176-86. PubMed ID: 21832060 [TBL] [Abstract][Full Text] [Related]
8. The NMR solution structure of subunit G (G(61)(-)(101)) of the eukaryotic V1VO ATPase from Saccharomyces cerevisiae. Rishikesan S; Manimekalai MS; Grüber G Biochim Biophys Acta; 2010 Oct; 1798(10):1961-8. PubMed ID: 20599533 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of transmembrane peptides from the vacuolar H(+)-ATPase in phospholipid membranes: spin-label electron paramagnetic resonance and polarized infrared spectroscopy. Kóta Z; Páli T; Dixon N; Kee TP; Harrison MA; Findlay JB; Finbow ME; Marsh D Biochemistry; 2008 Mar; 47(12):3937-49. PubMed ID: 18307317 [TBL] [Abstract][Full Text] [Related]
10. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
11. Glu-44 in the amino-terminal α-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly. Okamoto-Terry H; Umeki K; Nakanishi-Matsui M; Futai M J Biol Chem; 2013 Dec; 288(51):36236-43. PubMed ID: 24196958 [TBL] [Abstract][Full Text] [Related]
12. Atomic model for the membrane-embedded V Mazhab-Jafari MT; Rohou A; Schmidt C; Bueler SA; Benlekbir S; Robinson CV; Rubinstein JL Nature; 2016 Nov; 539(7627):118-122. PubMed ID: 27776355 [TBL] [Abstract][Full Text] [Related]
13. NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. Rishikesan S; Thaker YR; Grüber G J Bioenerg Biomembr; 2011 Apr; 43(2):187-93. PubMed ID: 21399923 [TBL] [Abstract][Full Text] [Related]
14. TM2 but not TM4 of subunit c'' interacts with TM7 of subunit a of the yeast V-ATPase as defined by disulfide-mediated cross-linking. Wang Y; Inoue T; Forgac M J Biol Chem; 2004 Oct; 279(43):44628-38. PubMed ID: 15322078 [TBL] [Abstract][Full Text] [Related]
15. Molecular dynamics study of the solvation of an alpha-helical transmembrane peptide by DMSO. Duarte AM; van Mierlo CP; Hemminga MA J Phys Chem B; 2008 Jul; 112(29):8664-71. PubMed ID: 18582096 [TBL] [Abstract][Full Text] [Related]
16. Conformation of a peptide encompassing the proton translocation channel of vacuolar H(+)-ATPase. Vos WL; Vermeer LS; Hemminga MA Biophys J; 2007 Jan; 92(1):138-46. PubMed ID: 17040980 [TBL] [Abstract][Full Text] [Related]
17. Defective assembly of a hybrid vacuolar H(+)-ATPase containing the mouse testis-specific E1 isoform and yeast subunits. Hayashi K; Sun-Wada GH; Wada Y; Nakanishi-Matsui M; Futai M Biochim Biophys Acta; 2008 Oct; 1777(10):1370-7. PubMed ID: 18662668 [TBL] [Abstract][Full Text] [Related]
18. Molecular Interactions and Cellular Itinerary of the Yeast RAVE (Regulator of the H+-ATPase of Vacuolar and Endosomal Membranes) Complex. Smardon AM; Nasab ND; Tarsio M; Diakov TT; Kane PM J Biol Chem; 2015 Nov; 290(46):27511-23. PubMed ID: 26405040 [TBL] [Abstract][Full Text] [Related]
19. Proton Transport and pH Control in Fungi. Kane PM Adv Exp Med Biol; 2016; 892():33-68. PubMed ID: 26721270 [TBL] [Abstract][Full Text] [Related]
20. Functional reconstitution of vacuolar H Sharma S; Oot RA; Khan MM; Wilkens S J Biol Chem; 2019 Apr; 294(16):6439-6449. PubMed ID: 30792311 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]