BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 30209206)

  • 41. DNA replication roadblocks caused by Cascade interference complexes are alleviated by RecG DNA repair helicase.
    Killelea T; Hawkins M; Howard JL; McGlynn P; Bolt EL
    RNA Biol; 2019 Apr; 16(4):543-548. PubMed ID: 30096986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancing Precision and Efficiency of Cas9-Mediated Knockin Through Combinatorial Fusions of DNA Repair Proteins.
    Richardson RR; Steyert M; Khim SN; Crutcher GW; Brandenburg C; Robertson CD; Romanowski AJ; Inen J; Altas B; Poulopoulos A
    CRISPR J; 2023 Oct; 6(5):447-461. PubMed ID: 37713292
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing.
    Vu TV; Das S; Nguyen CC; Kim J; Kim JY
    Biotechnol J; 2022 Jul; 17(7):e2100413. PubMed ID: 34846104
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Harnessing Type I and Type III CRISPR-Cas systems for genome editing.
    Li Y; Pan S; Zhang Y; Ren M; Feng M; Peng N; Chen L; Liang YX; She Q
    Nucleic Acids Res; 2016 Feb; 44(4):e34. PubMed ID: 26467477
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The CRISPR Growth Spurt: from Bench to Clinic on Versatile Small RNAs.
    Bayat H; Omidi M; Rajabibazl M; Sabri S; Rahimpour A
    J Microbiol Biotechnol; 2017 Feb; 27(2):207-218. PubMed ID: 27840399
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome Maintenance Proteins Modulate Autoimmunity Mediated Primed Adaptation by the
    Kurilovich E; Shiriaeva A; Metlitskaya A; Morozova N; Ivancic-Bace I; Severinov K; Savitskaya E
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31683605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Global detection of DNA repair outcomes induced by CRISPR-Cas9.
    Liu M; Zhang W; Xin C; Yin J; Shang Y; Ai C; Li J; Meng FL; Hu J
    Nucleic Acids Res; 2021 Sep; 49(15):8732-8742. PubMed ID: 34365511
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants.
    Makarova SS; Khromov AV; Spechenkova NA; Taliansky ME; Kalinina NO
    Biochemistry (Mosc); 2018 Dec; 83(12):1552-1562. PubMed ID: 30878030
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The application of CRISPR/Cas9 in genome editing of filamentous fungi.
    Li HH; Liu G
    Yi Chuan; 2017 May; 39(5):355-367. PubMed ID: 28487268
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.
    Vu GTH; Cao HX; Fauser F; Reiss B; Puchta H; Schubert I
    Plant J; 2017 Oct; 92(1):57-67. PubMed ID: 28696528
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Induced mutation and epigenetics modification in plants for crop improvement by targeting CRISPR/Cas9 technology.
    Khan MHU; Khan SU; Muhammad A; Hu L; Yang Y; Fan C
    J Cell Physiol; 2018 Jun; 233(6):4578-4594. PubMed ID: 29194606
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-Wide Abolishment of Mobile Genetic Elements Using Genome Shuffling and CRISPR/Cas-Assisted MAGE Allows the Efficient Stabilization of a Bacterial Chassis.
    Umenhoffer K; Draskovits G; Nyerges Á; Karcagi I; Bogos B; Tímár E; Csörgő B; Herczeg R; Nagy I; Fehér T; Pál C; Pósfai G
    ACS Synth Biol; 2017 Aug; 6(8):1471-1483. PubMed ID: 28426191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding the diversity of genetic outcomes from CRISPR-Cas generated homology-directed repair.
    Sansbury BM; Hewes AM; Kmiec EB
    Commun Biol; 2019; 2():458. PubMed ID: 31840103
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exogenous gene integration mediated by genome editing technologies in zebrafish.
    Morita H; Taimatsu K; Yanagi K; Kawahara A
    Bioengineered; 2017 May; 8(3):287-295. PubMed ID: 28272984
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR/Cas9; A robust technology for producing genetically engineered plants.
    Farooq R; Hussain K; Nazir S; Javed MR; Masood N
    Cell Mol Biol (Noisy-le-grand); 2018 Nov; 64(14):31-38. PubMed ID: 30511631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prime Editing: A Novel Cas9-Reverse Transcriptase Fusion May Revolutionize Genome Editing.
    Flotte TR; Gao G
    Hum Gene Ther; 2019 Dec; 30(12):1445-1446. PubMed ID: 31860398
    [No Abstract]   [Full Text] [Related]  

  • 59. Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion?
    Bischoff N; Wimberger S; Maresca M; Brakebusch C
    Cells; 2020 May; 9(5):. PubMed ID: 32466303
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.