BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 30209261)

  • 1. Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Scilingo EP; Alcañiz M; Valenza G
    Sci Rep; 2018 Sep; 8(1):13657. PubMed ID: 30209261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real vs. immersive-virtual emotional experience: Analysis of psycho-physiological patterns in a free exploration of an art museum.
    Marín-Morales J; Higuera-Trujillo JL; Greco A; Guixeres J; Llinares C; Gentili C; Scilingo EP; Alcañiz M; Valenza G
    PLoS One; 2019; 14(10):e0223881. PubMed ID: 31613927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heart rate variability analysis for the assessment of immersive emotional arousal using virtual reality: Comparing real and virtual scenarios.
    Marín-Morales J; Higuera-Trujillo JL; Guixeres J; Llinares C; Alcañiz M; Valenza G
    PLoS One; 2021; 16(7):e0254098. PubMed ID: 34197553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding subjective emotional arousal from EEG during an immersive virtual reality experience.
    Hofmann SM; Klotzsche F; Mariola A; Nikulin V; Villringer A; Gaebler M
    Elife; 2021 Oct; 10():. PubMed ID: 34708689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arousal recognition system based on heartbeat dynamics during auditory elicitation.
    Nardelli M; Valenza G; Greco A; Lanata A; Scilingo EP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6110-3. PubMed ID: 26737686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heart sound signals can be used for emotion recognition.
    Xiefeng C; Wang Y; Dai S; Zhao P; Liu Q
    Sci Rep; 2019 Apr; 9(1):6486. PubMed ID: 31019217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosignal-Based Multimodal Emotion Recognition in a Valence-Arousal Affective Framework Applied to Immersive Video Visualization.
    Pinto J; Fred A; da Silva HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3577-3583. PubMed ID: 31946651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding auditory-evoked response in affective states using wearable around-ear EEG system.
    Choi J; Kaongoen N; Choi H; Kim M; Kim BH; Jo S
    Biomed Phys Eng Express; 2023 Aug; 9(5):. PubMed ID: 37591224
    [No Abstract]   [Full Text] [Related]  

  • 9. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics.
    Valenza G; Citi L; Lanatá A; Scilingo EP; Barbieri R
    Sci Rep; 2014 May; 4():4998. PubMed ID: 24845973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging.
    Kim HC; Bandettini PA; Lee JH
    Neuroimage; 2019 Feb; 186():607-627. PubMed ID: 30366076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the relationship between interoceptive awareness, emotional experience, and brain processes.
    Pollatos O; Kirsch W; Schandry R
    Brain Res Cogn Brain Res; 2005 Dec; 25(3):948-62. PubMed ID: 16298111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study of Arousal and Valence Dimensional Variations for Emotion Recognition Using Peripheral Physiological Signals Acquired from Wearable Sensors
    Alskafi FA; Khandoker AH; Jelinek HF
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1104-1107. PubMed ID: 34891480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A nonlinear heartbeat dynamics model approach for personalized emotion recognition.
    Valenza G; Citi L; Lanatà A; Scilingo EP; Barbieri R
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2579-82. PubMed ID: 24110254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human emotion classification based on multiple physiological signals by wearable system.
    Liu X; Wang Q; Liu D; Wang Y; Zhang Y; Bai O; Sun J
    Technol Health Care; 2018; 26(S1):459-469. PubMed ID: 29758969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition of Intensive Valence and Arousal Affective States via Facial Electromyographic Activity in Young and Senior Adults.
    Tan JW; Andrade AO; Li H; Walter S; Hrabal D; Rukavina S; Limbrecht-Ecklundt K; Hoffman H; Traue HC
    PLoS One; 2016; 11(1):e0146691. PubMed ID: 26761427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ensemble Learning Method for Emotion Charting Using Multimodal Physiological Signals.
    Awan AW; Usman SM; Khalid S; Anwar A; Alroobaea R; Hussain S; Almotiri J; Ullah SS; Akram MU
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognizing emotions from EEG subbands using wavelet analysis.
    Candra H; Yuwono M; Handojoseno A; Chai R; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6030-3. PubMed ID: 26737666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical algorithms for emotion classification via functional connectivity.
    Jahromy FZ; Bajoulvand A; Daliri MR
    J Integr Neurosci; 2019 Sep; 18(3):293-297. PubMed ID: 31601078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emotion Recognition in Immersive Virtual Reality: From Statistics to Affective Computing.
    Marín-Morales J; Llinares C; Guixeres J; Alcañiz M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32927722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals From Wireless Low-cost Off-the-Shelf Devices.
    Katsigiannis S; Ramzan N
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):98-107. PubMed ID: 28368836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.