BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

567 related articles for article (PubMed ID: 30209397)

  • 1. Necroptosis microenvironment directs lineage commitment in liver cancer.
    Seehawer M; Heinzmann F; D'Artista L; Harbig J; Roux PF; Hoenicke L; Dang H; Klotz S; Robinson L; Doré G; Rozenblum N; Kang TW; Chawla R; Buch T; Vucur M; Roth M; Zuber J; Luedde T; Sipos B; Longerich T; Heikenwälder M; Wang XW; Bischof O; Zender L
    Nature; 2018 Oct; 562(7725):69-75. PubMed ID: 30209397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MYC determines lineage commitment in KRAS-driven primary liver cancer development.
    D'Artista L; Moschopoulou AA; Barozzi I; Craig AJ; Seehawer M; Herrmann L; Minnich M; Kang TW; Rist E; Henning M; Klotz S; Heinzmann F; Harbig J; Sipos B; Longerich T; Eilers M; Dauch D; Zuber J; Wang XW; Zender L
    J Hepatol; 2023 Jul; 79(1):141-149. PubMed ID: 36906109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor Microenvironment: Necroptosis Switches the Subtype of Liver Cancer While Necrosis Promotes Tumor Recurrence and Progression.
    Özdemir BH
    Exp Clin Transplant; 2023 Apr; 21(4):291-298. PubMed ID: 35297332
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Hill MA; Alexander WB; Guo B; Kato Y; Patra K; O'Dell MR; McCall MN; Whitney-Miller CL; Bardeesy N; Hezel AF
    Cancer Res; 2018 Aug; 78(16):4445-4451. PubMed ID: 29871934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oncogenic driver genes and tumor microenvironment determine the type of liver cancer.
    Wang G; Wang Q; Liang N; Xue H; Yang T; Chen X; Qiu Z; Zeng C; Sun T; Yuan W; Liu C; Chen Z; He X
    Cell Death Dis; 2020 May; 11(5):313. PubMed ID: 32366840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Notch2 controls hepatocyte-derived cholangiocarcinoma formation in mice.
    Wang J; Dong M; Xu Z; Song X; Zhang S; Qiao Y; Che L; Gordan J; Hu K; Liu Y; Calvisi DF; Chen X
    Oncogene; 2018 Jun; 37(24):3229-3242. PubMed ID: 29545603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma.
    Joseph NM; Tsokos CG; Umetsu SE; Shain AH; Kelley RK; Onodera C; Bowman S; Talevich E; Ferrell LD; Kakar S; Krings G
    J Pathol; 2019 Jun; 248(2):164-178. PubMed ID: 30690729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans.
    Zhang S; Wang J; Wang H; Fan L; Fan B; Zeng B; Tao J; Li X; Che L; Cigliano A; Ribback S; Dombrowski F; Chen B; Cong W; Wei L; Calvisi DF; Chen X
    Am J Pathol; 2018 Apr; 188(4):995-1006. PubMed ID: 29378174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducible liver-specific overexpression of gankyrin in zebrafish results in spontaneous intrahepatic cholangiocarcinoma and hepatocellular carcinoma formation.
    Huang SJ; Cheng CL; Chen JR; Gong HY; Liu W; Wu JL
    Biochem Biophys Res Commun; 2017 Aug; 490(3):1052-1058. PubMed ID: 28668389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentially expressed gene profiles of intrahepatic cholangiocarcinoma, hepatocellular carcinoma, and combined hepatocellular-cholangiocarcinoma by integrated microarray analysis.
    Xue TC; Zhang BH; Ye SL; Ren ZG
    Tumour Biol; 2015 Aug; 36(8):5891-9. PubMed ID: 25712376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oncogene-dependent function of BRG1 in hepatocarcinogenesis.
    Wang P; Song X; Cao D; Cui K; Wang J; Utpatel K; Shang R; Wang H; Che L; Evert M; Zhao K; Calvisi DF; Chen X
    Cell Death Dis; 2020 Feb; 11(2):91. PubMed ID: 32019910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liver stem cells: implications for hepatocarcinogenesis.
    Alison MR
    Stem Cell Rev; 2005; 1(3):253-60. PubMed ID: 17142862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells.
    Fan W; Yang H; Liu T; Wang J; Li TW; Mavila N; Tang Y; Yang J; Peng H; Tu J; Annamalai A; Noureddin M; Krishnan A; Gores GJ; Martínez-Chantar ML; Mato JM; Lu SC
    Hepatology; 2017 Apr; 65(4):1249-1266. PubMed ID: 27981602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity.
    Liu ZH; Lian BF; Dong QZ; Sun H; Wei JW; Sheng YY; Li W; Li YX; Xie L; Liu L; Qin LX
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2360-2368. PubMed ID: 29408647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity.
    Moeini A; Sia D; Zhang Z; Camprecios G; Stueck A; Dong H; Montal R; Torrens L; Martinez-Quetglas I; Fiel MI; Hao K; Villanueva A; Thung SN; Schwartz ME; Llovet JM
    J Hepatol; 2017 May; 66(5):952-961. PubMed ID: 28126467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptomic analyses of oncogenic hepatocytes reveal common and different molecular pathways of hepatocarcinogenesis in different developmental stages and genders in kras
    Huo X; Li H; Li Z; Yan C; Mathavan S; Liu J; Gong Z
    Biochem Biophys Res Commun; 2019 Mar; 510(4):558-564. PubMed ID: 30739784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide profiling of transcription factor activity in primary liver cancer using single-cell ATAC sequencing.
    Craig AJ; Silveira MAD; Ma L; Revsine M; Wang L; Heinrich S; Rae Z; Ruchinskas A; Dadkhah K; Do W; Behrens S; Mehrabadi FR; Dominguez DA; Forgues M; Budhu A; Chaisaingmongkol J; Hernandez JM; Davis JL; Tran B; Marquardt JU; Ruchirawat M; Kelly M; Greten TF; Wang XW
    Cell Rep; 2023 Nov; 42(11):113446. PubMed ID: 37980571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ZBTB7B is a permissive regulator of hepatocellular carcinoma initiation by repressing c-Jun expression and function.
    Zhu Y; Wang Q; Xie X; Ma C; Qiao Y; Zhang Y; Wu Y; Gao Y; Jiang J; Liu X; Chen J; Li C; Ge G
    Cell Death Dis; 2024 Jan; 15(1):55. PubMed ID: 38225233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse Model for Hepatocellular Carcinoma and Cholangiocarcinoma Originated from Mature Hepatocytes.
    Yamamoto M; Xin B; Nishikawa Y
    Methods Mol Biol; 2019; 1905():221-236. PubMed ID: 30536104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IGF2 Is Up-regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models.
    Martinez-Quetglas I; Pinyol R; Dauch D; Torrecilla S; Tovar V; Moeini A; Alsinet C; Portela A; Rodriguez-Carunchio L; Solé M; Lujambio A; Villanueva A; Thung S; Esteller M; Zender L; Llovet JM
    Gastroenterology; 2016 Dec; 151(6):1192-1205. PubMed ID: 27614046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.