These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 30209539)
1. Crosstalk of protein kinase C ε with Smad2/3 promotes tumor cell proliferation in prostate cancer cells by enhancing aerobic glycolysis. Xu W; Zeng F; Li S; Li G; Lai X; Wang QJ; Deng F Cell Mol Life Sci; 2018 Dec; 75(24):4583-4598. PubMed ID: 30209539 [TBL] [Abstract][Full Text] [Related]
2. Docetaxel suppressed cell proliferation through Smad3/HIF-1α-mediated glycolysis in prostate cancer cells. Peng J; He Z; Yuan Y; Xie J; Zhou Y; Guo B; Guo J Cell Commun Signal; 2022 Dec; 20(1):194. PubMed ID: 36536346 [TBL] [Abstract][Full Text] [Related]
3. Differential roles of Smad2 and Smad3 in the regulation of TGF-β1-mediated growth inhibition and cell migration in pancreatic ductal adenocarcinoma cells: control by Rac1. Ungefroren H; Groth S; Sebens S; Lehnert H; Gieseler F; Fändrich F Mol Cancer; 2011 May; 10():67. PubMed ID: 21624123 [TBL] [Abstract][Full Text] [Related]
4. MiR-1 suppresses tumor cell proliferation in colorectal cancer by inhibition of Smad3-mediated tumor glycolysis. Xu W; Zhang Z; Zou K; Cheng Y; Yang M; Chen H; Wang H; Zhao J; Chen P; He L; Chen X; Geng L; Gong S Cell Death Dis; 2017 May; 8(5):e2761. PubMed ID: 28471448 [TBL] [Abstract][Full Text] [Related]
5. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells. Vo BT; Cody B; Cao Y; Khan SA Carcinogenesis; 2012 Nov; 33(11):2054-64. PubMed ID: 22843506 [TBL] [Abstract][Full Text] [Related]
6. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer. Xia L; Sun J; Xie S; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Sha J; Xue W Cell Prolif; 2020 Nov; 53(11):e12918. PubMed ID: 33025691 [TBL] [Abstract][Full Text] [Related]
7. Smad2 and Smad3 phosphorylated at both linker and COOH-terminal regions transmit malignant TGF-beta signal in later stages of human colorectal cancer. Matsuzaki K; Kitano C; Murata M; Sekimoto G; Yoshida K; Uemura Y; Seki T; Taketani S; Fujisawa J; Okazaki K Cancer Res; 2009 Jul; 69(13):5321-30. PubMed ID: 19531654 [TBL] [Abstract][Full Text] [Related]
8. Activation of nuclear factor κB (NF-κB) in prostate cancer is mediated by protein kinase C epsilon (PKCepsilon). Garg R; Blando J; Perez CJ; Wang H; Benavides FJ; Kazanietz MG J Biol Chem; 2012 Oct; 287(44):37570-82. PubMed ID: 22955280 [TBL] [Abstract][Full Text] [Related]
9. Protein kinase C epsilon promotes de novo lipogenesis and tumor growth in prostate cancer cells by regulating the phosphorylation and nuclear translocation of pyruvate kinase isoform M2. Lai X; Liang Y; Jin J; Zhang H; Wu Z; Li G; Wang J; Zhang Z; Chen H; Zeng F; Deng F Exp Cell Res; 2023 Jan; 422(1):113427. PubMed ID: 36400183 [TBL] [Abstract][Full Text] [Related]
10. Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Yang J; Wahdan-Alaswad R; Danielpour D Cancer Res; 2009 Mar; 69(6):2185-90. PubMed ID: 19276350 [TBL] [Abstract][Full Text] [Related]
11. Apigenin inhibits TGF-β-induced VEGF expression in human prostate carcinoma cells via a Smad2/3- and Src-dependent mechanism. Mirzoeva S; Franzen CA; Pelling JC Mol Carcinog; 2014 Aug; 53(8):598-609. PubMed ID: 23359392 [TBL] [Abstract][Full Text] [Related]
12. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. Sanità P; Capulli M; Teti A; Galatioto GP; Vicentini C; Chiarugi P; Bologna M; Angelucci A BMC Cancer; 2014 Mar; 14():154. PubMed ID: 24597899 [TBL] [Abstract][Full Text] [Related]
13. The phosphorylation of the Smad2/3 linker region by nemo-like kinase regulates TGF-β signaling. Liang J; Zhou Y; Zhang N; Wang D; Cheng X; Li K; Huang R; Lu Y; Wang H; Han D; Wu W; Han M; Miao S; Wang L; Zhao H; Song W J Biol Chem; 2021; 296():100512. PubMed ID: 33676893 [TBL] [Abstract][Full Text] [Related]
15. Mutant p53 disrupts role of ShcA protein in balancing Smad protein-dependent and -independent signaling activity of transforming growth factor-β (TGF-β). Lin S; Yu L; Yang J; Liu Z; Karia B; Bishop AJR; Jackson J; Lozano G; Copland JA; Mu X; Sun B; Sun LZ J Biol Chem; 2011 Dec; 286(51):44023-44034. PubMed ID: 22039050 [TBL] [Abstract][Full Text] [Related]
16. Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Aziz MH; Manoharan HT; Church DR; Dreckschmidt NE; Zhong W; Oberley TD; Wilding G; Verma AK Cancer Res; 2007 Sep; 67(18):8828-38. PubMed ID: 17875724 [TBL] [Abstract][Full Text] [Related]
17. Transforming growth factor-beta suppressed Id-1 Expression in a smad3-dependent manner in LoVo cells. Song H; Guo B; Zhang J; Song C Anat Rec (Hoboken); 2010 Jan; 293(1):42-7. PubMed ID: 19798702 [TBL] [Abstract][Full Text] [Related]
18. Angiotensin II induces connective tissue growth factor and collagen I expression via transforming growth factor-beta-dependent and -independent Smad pathways: the role of Smad3. Yang F; Chung AC; Huang XR; Lan HY Hypertension; 2009 Oct; 54(4):877-84. PubMed ID: 19667256 [TBL] [Abstract][Full Text] [Related]
19. Long non-‑coding RNA SNHG16 functions as a tumor activator by sponging miR‑373‑3p to regulate the TGF‑β‑R2/SMAD pathway in prostate cancer. Weng W; Liu C; Li G; Ruan Q; Li H; Lin N; Chen G Mol Med Rep; 2021 Dec; 24(6):. PubMed ID: 34643247 [TBL] [Abstract][Full Text] [Related]
20. Increased TGF-β1-mediated suppression of growth and motility in castrate-resistant prostate cancer cells is consistent with Smad2/3 signaling. Miles FL; Tung NS; Aguiar AA; Kurtoglu S; Sikes RA Prostate; 2012 Sep; 72(12):1339-50. PubMed ID: 22228025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]