These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30210459)

  • 1.
    Yang L; Zheng C; Chen Y; Ying H
    Front Microbiol; 2018; 9():1860. PubMed ID: 30210459
    [No Abstract]   [Full Text] [Related]  

  • 2. Improving Xylose Utilization of Saccharomyces cerevisiae by Expressing the MIG1 Mutant from the Self-Flocculating Yeast SPSC01.
    Xu JR; Zhao XQ; Liu CG; Bai FW
    Protein Pept Lett; 2018; 25(2):202-207. PubMed ID: 29359658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amino acid transporter genes are essential for FLO11-dependent and FLO11-independent biofilm formation and invasive growth in Saccharomyces cerevisiae.
    Torbensen R; Møller HD; Gresham D; Alizadeh S; Ochmann D; Boles E; Regenberg B
    PLoS One; 2012; 7(7):e41272. PubMed ID: 22844449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BSC2 induces multidrug resistance via contributing to the formation of biofilm in Saccharomyces cerevisiae.
    Huang Z; Dai H; Zhang X; Wang Q; Sun J; Deng Y; Shi P
    Cell Microbiol; 2021 Dec; 23(12):e13391. PubMed ID: 34482605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Many Saccharomyces cerevisiae Cell Wall Protein Encoding Genes Are Coregulated by Mss11, but Cellular Adhesion Phenotypes Appear Only Flo Protein Dependent.
    Bester MC; Jacobson D; Bauer FF
    G3 (Bethesda); 2012 Jan; 2(1):131-41. PubMed ID: 22384390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae.
    Govender P; Domingo JL; Bester MC; Pretorius IS; Bauer FF
    Appl Environ Microbiol; 2008 Oct; 74(19):6041-52. PubMed ID: 18708514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation.
    Li Z; Chen Y; Liu D; Zhao N; Cheng H; Ren H; Guo T; Niu H; Zhuang W; Wu J; Ying H
    Front Microbiol; 2015; 6():139. PubMed ID: 25755652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide increases biofilm formation in
    Yang L; Zheng C; Chen Y; Shi X; Ying Z; Ying H
    Biotechnol Biofuels; 2019; 12():30. PubMed ID: 30809273
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Moreno-García J; Martín-García FJ; Ogawa M; García-Martínez T; Moreno J; Mauricio JC; Bisson LF
    Front Microbiol; 2018; 9():2586. PubMed ID: 30429833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm-based fermentation: a novel immobilisation strategy for Saccharomyces cerevisiae cell cycle progression during ethanol production.
    Liang C; Ding S; Sun W; Liu L; Zhao W; Zhang D; Ying H; Liu D; Chen Y
    Appl Microbiol Biotechnol; 2020 Sep; 104(17):7495-7505. PubMed ID: 32666184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell Cycle Progression Influences Biofilm Formation in Saccharomyces cerevisiae 1308.
    Jiang Y; Liang C; Zhao W; Chen T; Yu B; Hou A; Zhu J; Zhang T; Liu Q; Ying H; Liu D; Sun W; Chen Y
    Microbiol Spectr; 2022 Jun; 10(3):e0276521. PubMed ID: 35670600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm.
    Zhang D; Wang F; Yu Y; Ding S; Chen T; Sun W; Liang C; Yu B; Ying H; Liu D; Chen Y
    Appl Microbiol Biotechnol; 2021 May; 105(9):3635-3648. PubMed ID: 33852023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic diversity of FLO1 and FLO5 genes in wine flocculent Saccharomyces cerevisiae strains.
    Tofalo R; Perpetuini G; Di Gianvito P; Schirone M; Corsetti A; Suzzi G
    Int J Food Microbiol; 2014 Nov; 191():45-52. PubMed ID: 25218464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Flocculation of Yeast Species, a New Mechanism to Govern Population Dynamics in Microbial Ecosystems.
    Rossouw D; Bagheri B; Setati ME; Bauer FF
    PLoS One; 2015; 10(8):e0136249. PubMed ID: 26317200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol-induced yeast flocculation directed by the promoter of TPS1 encoding trehalose-6-phosphate synthase 1 for efficient ethanol production.
    Li Q; Zhao XQ; Chang AK; Zhang QM; Bai FW
    Metab Eng; 2012 Jan; 14(1):1-8. PubMed ID: 22178744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+ -dependent flocculation by Flo8p and Mss11p.
    Bester MC; Pretorius IS; Bauer FF
    Curr Genet; 2006 Jun; 49(6):375-83. PubMed ID: 16568252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acetyltransferase SAS2 and sirtuin SIR2, respectively, control flocculation and biofilm formation in wine yeast.
    Rodriguez ME; Orozco H; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2014 Sep; 14(6):845-57. PubMed ID: 24920206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expansion of a Telomeric
    Bernardi B; Kayacan Y; Wendland J
    Front Genet; 2018; 9():536. PubMed ID: 30542368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast.
    Espinazo-Romeu M; Cantoral JM; Matallana E; Aranda A
    FEMS Yeast Res; 2008 Nov; 8(7):1127-36. PubMed ID: 18554307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.