These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 30210689)
41. [Growth and osteogenesis characteristics of cultured canine mesenchymal stem cells under osteogenic induction]. Tang Y; Li Y; Chen H; Wu Q; Yin G; Zhou D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):142-6. PubMed ID: 16532829 [TBL] [Abstract][Full Text] [Related]
42. Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Chung DJ; Hayashi K; Toupadakis CA; Wong A; Yellowley CE Res Vet Sci; 2012 Feb; 92(1):66-75. PubMed ID: 21075407 [TBL] [Abstract][Full Text] [Related]
43. Age-dependent down-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 4 causes deterioration of canine sinoatrial node function. Du J; Deng S; Pu D; Liu Y; Xiao J; She Q Acta Biochim Biophys Sin (Shanghai); 2017 May; 49(5):400-408. PubMed ID: 28369243 [TBL] [Abstract][Full Text] [Related]
44. DNA methylation cooperates with H3K9me2 at HCN4 promoter to regulate the differentiation of bone marrow mesenchymal stem cells into pacemaker-like cells. Sun X; Jin K; Ding X; Ruan Z; Xu P PLoS One; 2023; 18(8):e0289510. PubMed ID: 37643180 [TBL] [Abstract][Full Text] [Related]
45. Simulated Microgravity Culture Enhances the Neuroprotective Effects of Human Cranial Bone-Derived Mesenchymal Stem Cells in Traumatic Brain Injury. Otsuka T; Imura T; Nakagawa K; Shrestha L; Takahashi S; Kawahara Y; Sueda T; Kurisu K; Yuge L Stem Cells Dev; 2018 Sep; 27(18):1287-1297. PubMed ID: 29790427 [TBL] [Abstract][Full Text] [Related]
46. Hypoxia induced the differentiation of Tbx18-positive epicardial cells to CoSMCs. Jing X; Gao Y; Xiao S; Qin Q; Wei X; Yan Y; Wu L; Deng S; Du J; Liu Y; She Q Sci Rep; 2016 Jul; 6():30468. PubMed ID: 27456656 [TBL] [Abstract][Full Text] [Related]
47. Conversion of human cardiac progenitor cells into cardiac pacemaker-like cells. Raghunathan S; Islas JF; Mistretta B; Iyer D; Shi L; Gunaratne PH; Ko G; Schwartz RJ; McConnell BK J Mol Cell Cardiol; 2020 Jan; 138():12-22. PubMed ID: 31678351 [TBL] [Abstract][Full Text] [Related]
48. Fms-related tyrosine kinase 3 ligand promotes proliferation of placenta amnion and chorion mesenchymal stem cells in vitro. Li F; Xu Y; Xu X; Xu B; Zhao J; Zhang X Mol Med Rep; 2014 Jul; 10(1):322-8. PubMed ID: 24820950 [TBL] [Abstract][Full Text] [Related]
49. cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Porro A; Thiel G; Moroni A; Saponaro A Front Physiol; 2020; 11():771. PubMed ID: 32733276 [TBL] [Abstract][Full Text] [Related]
50. Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells. Kang IS; Suh J; Lee MN; Lee C; Jin J; Lee C; Yang YI; Jang Y; Oh GT BMB Rep; 2020 Feb; 53(2):118-123. PubMed ID: 31964470 [TBL] [Abstract][Full Text] [Related]
51. Mesoangioblasts from ventricular vessels can differentiate in vitro into cardiac myocytes with sinoatrial-like properties. Barbuti A; Galvez BG; Crespi A; Scavone A; Baruscotti M; Brioschi C; Cossu G; DiFrancesco D J Mol Cell Cardiol; 2010 Feb; 48(2):415-23. PubMed ID: 19837079 [TBL] [Abstract][Full Text] [Related]
52. Cardiac stem cells differentiate into sinus node-like cells. Zhang J; Huang C; Wu P; Yang J; Song T; Chen Y; Fan X; Wang T Tohoku J Exp Med; 2010 Oct; 222(2):113-20. PubMed ID: 20877167 [TBL] [Abstract][Full Text] [Related]
53. Canine bone marrow mesenchymal stromal cells with lentiviral mHCN4 gene transfer create cardiac pacemakers. Jun C; Zhihui Z; Lu W; Yaoming N; Lei W; Yao Q; Zhiyuan S Cytotherapy; 2012 May; 14(5):529-39. PubMed ID: 22316056 [TBL] [Abstract][Full Text] [Related]
54. Recreating an artificial biological pacemaker: insights from a theoretical model. Viswanathan PC; Coles JA; Sharma V; Sigg DC Heart Rhythm; 2006 Jul; 3(7):824-31. PubMed ID: 16818216 [TBL] [Abstract][Full Text] [Related]
55. In vitro study of the effects of reprogramming neonatal rat fibroblasts transfected with TBX18 on spontaneous beating in neonatal rat cardiomyocytes. Quan D; Huang H Mol Med Rep; 2018 Dec; 18(6):5520-5526. PubMed ID: 30365101 [TBL] [Abstract][Full Text] [Related]
56. Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Liu J; Dobrzynski H; Yanni J; Boyett MR; Lei M Cardiovasc Res; 2007 Mar; 73(4):729-38. PubMed ID: 17222809 [TBL] [Abstract][Full Text] [Related]
57. [Sinoatrial node cells phenotype expression is induced by direct bone marrow stem cells contact with sinoatrial node cells]. Guan SB; Ma AQ; Jiang WH Zhonghua Xin Xue Guan Bing Za Zhi; 2009 Jan; 37(1):73-6. PubMed ID: 19671359 [TBL] [Abstract][Full Text] [Related]
58. Chorionic and amniotic membrane-derived stem cells have distinct, and gestational diabetes mellitus independent, proliferative, differentiation, and immunomodulatory capacities. Chen L; Merkhan MM; Forsyth NR; Wu P Stem Cell Res; 2019 Oct; 40():101537. PubMed ID: 31422237 [TBL] [Abstract][Full Text] [Related]
59. Shox2 regulates the pacemaker gene program in embryoid bodies. Hashem SI; Lam ML; Mihardja SS; White SM; Lee RJ; Claycomb WC Stem Cells Dev; 2013 Nov; 22(21):2915-26. PubMed ID: 23767866 [TBL] [Abstract][Full Text] [Related]
60. Generation of cardiac pacemaker cells by programming and differentiation. Husse B; Franz WM Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1948-52. PubMed ID: 26681531 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]