These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30211255)

  • 1. Dataset demonstrating physical properties of recycled wind turbine blade composites.
    Mamanpush SH; Li H; Englund K; Tabatabaei AT
    Data Brief; 2018 Oct; 20():658-661. PubMed ID: 30211255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycled wind turbine blades as a feedstock for second generation composites.
    Mamanpush SH; Li H; Englund K; Tabatabaei AT
    Waste Manag; 2018 Jun; 76():708-714. PubMed ID: 29506776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical properties data of extruded composites from recycled wind turbine blade material.
    Mamanpush SH; Tabatabaei AT; Li H; Englund K
    Data Brief; 2019 Aug; 25():104030. PubMed ID: 31440534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data on the mechanical properties of recycled wind turbine blade composites.
    Mamanpush SH; Tabatabaei AT; Li H; Englund K
    Data Brief; 2018 Aug; 19():230-235. PubMed ID: 29892638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental data on the mechanical and thermal properties of extruded composites from recycled wind turbine blade material.
    Mamanpush SH; Tabatabaei AT; Li H; Englund K
    Data Brief; 2019 Aug; 25():104253. PubMed ID: 31384646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recycling of both resin and fibre from wind turbine blade waste via small molecule-assisted dissolution.
    Muzyka R; Sobek S; Korytkowska-Wałach A; Drewniak Ł; Sajdak M
    Sci Rep; 2023 Jun; 13(1):9270. PubMed ID: 37286809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wind Turbine Blades Using Recycled Carbon Fibers: An Environmental Assessment.
    Upadhyayula VKK; Gadhamshetty V; Athanassiadis D; Tysklind M; Meng F; Pan Q; Cullen JM; Yacout DMM
    Environ Sci Technol; 2022 Jan; 56(2):1267-1277. PubMed ID: 34981927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials.
    Fonte R; Xydis G
    J Environ Manage; 2021 Jun; 287():112269. PubMed ID: 33711665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustainable End-of-Life Management of Wind Turbine Blades: Overview of Current and Coming Solutions.
    Mishnaevsky L
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33673684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delamination Fracture Behavior of Unidirectional Carbon Reinforced Composites Applied to Wind Turbine Blades.
    Boyano A; Lopez-Guede JM; Torre-Tojal L; Fernandez-Gamiz U; Zulueta E; Mujika F
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33513957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Graphene Reinforcement on Static Bending, Free Vibration, and Torsion of Wind Turbine Blades.
    Kim HJ; Cho JR
    Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance Analysis of Reinforced Epoxy Functionalized Carbon Nanotubes Composites for Vertical Axis Wind Turbine Blade.
    Elhenawy Y; Fouad Y; Marouani H; Bassyouni M
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33525701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture of High-Performance Tidal Turbine Blades Using Advanced Composite Manufacturing Technologies.
    Finnegan W; Allen R; Glennon C; Maguire J; Flanagan M; Flanagan T
    Appl Compos Mater (Dordr); 2021; 28(6):2061-2086. PubMed ID: 35035103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycled Glass Fiber Composites from Wind Turbine Waste for 3D Printing Feedstock: Effects of Fiber Content and Interface on Mechanical Performance.
    Rahimizadeh A; Kalman J; Henri R; Fayazbakhsh K; Lessard L
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31783617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050.
    Lichtenegger G; Rentizelas AA; Trivyza N; Siegl S
    Waste Manag; 2020 Apr; 106():120-131. PubMed ID: 32203899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Materials for Wind Turbine Blades: An Overview.
    Mishnaevsky L; Branner K; Petersen HN; Beauson J; McGugan M; Sørensen BF
    Materials (Basel); 2017 Nov; 10(11):. PubMed ID: 29120396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind turbine blade waste in 2050.
    Liu P; Barlow CY
    Waste Manag; 2017 Apr; 62():229-240. PubMed ID: 28215972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiobjective Optimization of Composite Wind Turbine Blade.
    Jureczko M; Mrówka M
    Materials (Basel); 2022 Jul; 15(13):. PubMed ID: 35806770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Regulation of the Cross-Linking Structure in Polyurethane: Achieving Outstanding Processing and Mechanical Properties for a Wind Turbine Blade.
    Jiang Z; Li L; Fu L; Xiong G; Wu H; Guo S
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical and Experimental Analysis of Horizontal-Axis Wind Turbine Blade Fatigue Life.
    Shah I; Khan A; Ali M; Shahab S; Aziz S; Noon MAA; Tipu JAK
    Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.