These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 30211556)

  • 21. Small angle X-ray scattering reveals a compact intermediate in RNA folding.
    Russell R; Millett IS; Doniach S; Herschlag D
    Nat Struct Biol; 2000 May; 7(5):367-70. PubMed ID: 10802731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural rearrangements linked to global folding pathways of the Azoarcus group I ribozyme.
    Chauhan S; Behrouzi R; Rangan P; Woodson SA
    J Mol Biol; 2009 Mar; 386(4):1167-78. PubMed ID: 19154736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Revealing the distinct folding phases of an RNA three-helix junction.
    Plumridge A; Katz AM; Calvey GD; Elber R; Kirmizialtin S; Pollack L
    Nucleic Acids Res; 2018 Aug; 46(14):7354-7365. PubMed ID: 29762712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the kinetic and thermodynamic consequences of the tetraloop/tetraloop receptor monovalent ion-binding site in P4-P6 RNA by smFRET.
    Bisaria N; Herschlag D
    Biochem Soc Trans; 2015 Apr; 43(2):172-8. PubMed ID: 25849913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Principles of RNA compaction: insights from the equilibrium folding pathway of the P4-P6 RNA domain in monovalent cations.
    Takamoto K; Das R; He Q; Doniach S; Brenowitz M; Herschlag D; Chance MR
    J Mol Biol; 2004 Nov; 343(5):1195-206. PubMed ID: 15491606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative tests of a reconstitution model for RNA folding thermodynamics and kinetics.
    Bisaria N; Greenfeld M; Limouse C; Mabuchi H; Herschlag D
    Proc Natl Acad Sci U S A; 2017 Sep; 114(37):E7688-E7696. PubMed ID: 28839094
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength.
    Brown TS; Chadalavada DM; Bevilacqua PC
    J Mol Biol; 2004 Aug; 341(3):695-712. PubMed ID: 15288780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme.
    Das R; Kwok LW; Millett IS; Bai Y; Mills TT; Jacob J; Maskel GS; Seifert S; Mochrie SG; Thiyagarajan P; Doniach S; Pollack L; Herschlag D
    J Mol Biol; 2003 Sep; 332(2):311-9. PubMed ID: 12948483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hinge stiffness is a barrier to RNA folding.
    Schlatterer JC; Kwok LW; Lamb JS; Park HY; Andresen K; Brenowitz M; Pollack L
    J Mol Biol; 2008 Jun; 379(4):859-70. PubMed ID: 18471829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core.
    Rueda D; Wick K; McDowell SE; Walter NG
    Biochemistry; 2003 Aug; 42(33):9924-36. PubMed ID: 12924941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
    Gleitsman KR; Herschlag DH
    RNA; 2014 Nov; 20(11):1732-46. PubMed ID: 25246656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tertiary interactions determine the accuracy of RNA folding.
    Chauhan S; Woodson SA
    J Am Chem Soc; 2008 Jan; 130(4):1296-303. PubMed ID: 18179212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme.
    Su LJ; Brenowitz M; Pyle AM
    J Mol Biol; 2003 Dec; 334(4):639-52. PubMed ID: 14636593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Contributions and competition of Mg
    Kognole AA; MacKerell AD
    RNA; 2020 Nov; 26(11):1704-1715. PubMed ID: 32769092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Watching ion-driven kinetics of ribozyme folding and misfolding caused by energetic and topological frustration one molecule at a time.
    Hori N; Thirumalai D
    Nucleic Acids Res; 2023 Oct; 51(19):10737-10751. PubMed ID: 37758176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA.
    Pan J; Deras ML; Woodson SA
    J Mol Biol; 2000 Feb; 296(1):133-44. PubMed ID: 10656822
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Light-controlled twister ribozyme with single-molecule detection resolves RNA function in time and space.
    Korman A; Sun H; Hua B; Yang H; Capilato JN; Paul R; Panja S; Ha T; Greenberg MM; Woodson SA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(22):12080-12086. PubMed ID: 32430319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.