These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 30211556)

  • 61. Folding path of P5abc RNA involves direct coupling of secondary and tertiary structures.
    Koculi E; Cho SS; Desai R; Thirumalai D; Woodson SA
    Nucleic Acids Res; 2012 Sep; 40(16):8011-20. PubMed ID: 22641849
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction.
    Treiber DK; Williamson JR
    J Mol Biol; 2001 Jan; 305(1):11-21. PubMed ID: 11114243
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mg2+-RNA interaction free energies and their relationship to the folding of RNA tertiary structures.
    Grilley D; Soto AM; Draper DE
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14003-8. PubMed ID: 16966612
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Concerted folding of a Candida ribozyme into the catalytically active structure posterior to a rapid RNA compaction.
    Xiao M; Leibowitz MJ; Zhang Y
    Nucleic Acids Res; 2003 Jul; 31(14):3901-8. PubMed ID: 12853605
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Exploring the folding landscape of a structured RNA.
    Russell R; Zhuang X; Babcock HP; Millett IS; Doniach S; Chu S; Herschlag D
    Proc Natl Acad Sci U S A; 2002 Jan; 99(1):155-60. PubMed ID: 11756689
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Structure of a folding intermediate reveals the interplay between core and peripheral elements in RNA folding.
    Baird NJ; Westhof E; Qin H; Pan T; Sosnick TR
    J Mol Biol; 2005 Sep; 352(3):712-22. PubMed ID: 16115647
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An optimal Mg(2+) concentration for kinetic folding of the tetrahymena ribozyme.
    Rook MS; Treiber DK; Williamson JR
    Proc Natl Acad Sci U S A; 1999 Oct; 96(22):12471-6. PubMed ID: 10535946
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular Simulations of Ion Effects on the Thermodynamics of RNA Folding.
    Denesyuk NA; Hori N; Thirumalai D
    J Phys Chem B; 2018 Dec; 122(50):11860-11867. PubMed ID: 30468380
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles.
    Bernetti M; Hall KB; Bussi G
    Nucleic Acids Res; 2021 Aug; 49(14):e84. PubMed ID: 34107023
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single-molecule FRET studies of RNA folding: a Diels-Alderase ribozyme with photolabile nucleotide modifications.
    Kobitski AY; Schäfer S; Nierth A; Singer M; Jäschke A; Nienhaus GU
    J Phys Chem B; 2013 Oct; 117(42):12800-6. PubMed ID: 23621553
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme.
    Kuo LY; Davidson LA; Pico S
    Biochim Biophys Acta; 1999 Dec; 1489(2-3):281-92. PubMed ID: 10673029
    [TBL] [Abstract][Full Text] [Related]  

  • 72. An obligate intermediate along the slow folding pathway of a group II intron ribozyme.
    Su LJ; Waldsich C; Pyle AM
    Nucleic Acids Res; 2005; 33(21):6674-87. PubMed ID: 16314300
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evidence for a thermodynamically distinct Mg2+ ion associated with formation of an RNA tertiary structure.
    Leipply D; Draper DE
    J Am Chem Soc; 2011 Aug; 133(34):13397-405. PubMed ID: 21776997
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dependence of RNA tertiary structural stability on Mg2+ concentration: interpretation of the Hill equation and coefficient.
    Leipply D; Draper DE
    Biochemistry; 2010 Mar; 49(9):1843-53. PubMed ID: 20112919
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Early Folding Intermediates of the Tetrahymena Ribozyme are Kinetically Trapped.
    Ralston CY; Sclavi B; Brenowitz M; Sullivan M; Chance MR
    J Biomol Struct Dyn; 2000; 17 Suppl 1():195-200. PubMed ID: 22607424
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Single-molecule FRET studies of counterion effects on the free energy landscape of human mitochondrial lysine tRNA.
    Dammertz K; Hengesbach M; Helm M; Nienhaus GU; Kobitski AY
    Biochemistry; 2011 Apr; 50(15):3107-15. PubMed ID: 21375355
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks.
    Downs WD; Cech TR
    RNA; 1996 Jul; 2(7):718-32. PubMed ID: 8756414
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mapping the kinetic barriers of a Large RNA molecule's folding landscape.
    Schlatterer JC; Martin JS; Laederach A; Brenowitz M
    PLoS One; 2014; 9(2):e85041. PubMed ID: 24586236
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The rate-limiting step in the folding of a large ribozyme without kinetic traps.
    Fang XW; Thiyagarajan P; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8518-23. PubMed ID: 12084911
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermodynamics of ion-induced RNA folding in the hammerhead ribozyme: an isothermal titration calorimetric study.
    Hammann C; Cooper A; Lilley DM
    Biochemistry; 2001 Feb; 40(5):1423-9. PubMed ID: 11170470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.