These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Dynamic phase measurement of fast liquid crystal phase modulators. Fells JAJ; Salter PS; Welch C; Jin Y; Wilkinson TD; Booth MJ; Mehl GH; Elston SJ; Morris SM Opt Express; 2022 Jul; 30(14):24788-24803. PubMed ID: 36237024 [TBL] [Abstract][Full Text] [Related]
7. Fast beam steering with a ferroelectric-liquid-crystal optical phased array. Engström D; O'Callaghan MJ; Walker C; Handschy MA Appl Opt; 2009 Mar; 48(9):1721-6. PubMed ID: 19305470 [TBL] [Abstract][Full Text] [Related]
8. Flexoelectro-optic properties of chiral nematic liquid crystals in the uniform standing helix configuration. Castles F; Morris SM; Coles HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031709. PubMed ID: 19905133 [TBL] [Abstract][Full Text] [Related]
9. Polarization-independent nematic liquid crystal phase modulator based on optical compensation with sub-millisecond response. Yan K; Guo Q; Wu F; Sun J; Zhao H; Kwok HS Opt Express; 2019 Apr; 27(7):9925-9932. PubMed ID: 31045139 [TBL] [Abstract][Full Text] [Related]
10. Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap. Peng Z; Liu Y; Yao L; Cao Z; Mu Q; Hu L; Xuan L Opt Lett; 2011 Sep; 36(18):3608-10. PubMed ID: 21931406 [TBL] [Abstract][Full Text] [Related]
11. High-speed analog refractive-index modulator that uses a chiral smectic liquid crystal. Sneh A; Liu JY; Johnson KM Opt Lett; 1994 Feb; 19(4):305-7. PubMed ID: 19829625 [TBL] [Abstract][Full Text] [Related]
12. Low aberration and fast switching microlenses based on a novel liquid crystal mixture. Algorri JF; Bennis N; Herman J; Kula P; Urruchi V; Sánchez-Pena JM Opt Express; 2017 Jun; 25(13):14795-14808. PubMed ID: 28789063 [TBL] [Abstract][Full Text] [Related]
13. Flexoelectro-optic effect and two-beam energy exchange in a hybrid photorefractive cholesteric cell with a short-pitch horizontal helix. Reshetnyak VY; Pinkevych IP; Evans DR Phys Rev E; 2018 Jun; 97(6-1):062701. PubMed ID: 30011427 [TBL] [Abstract][Full Text] [Related]
14. Analog low-loss full-range phase modulation by utilizing a V-shaped switched ferroelectric liquid-crystal cell in reflective mode. Engström D; Rudquist P; Bengtsson J; D'havé K; Galt S Opt Lett; 2006 Oct; 31(19):2906-8. PubMed ID: 16969418 [TBL] [Abstract][Full Text] [Related]
15. Analog distorted helix ferroelectric liquid-crystal-on-silicon spatial light modulator. McKnight DJ; Johnson KM; Follett MA Opt Lett; 1995 Mar; 20(5):513-5. PubMed ID: 19859238 [TBL] [Abstract][Full Text] [Related]
16. Polymer Stabilization of Uniform Lying Helix Texture in a Bimesogen-Doped Cholesteric Liquid Crystal for Frequency-Modulated Electro-Optic Responses. Yu CH; Wu PC; Lee W Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160716 [TBL] [Abstract][Full Text] [Related]
17. High-speed analog complex-amplitude liquid-crystal light modulator. Sharp GD; Johnson KM Opt Lett; 1994 Aug; 19(16):1228-30. PubMed ID: 19855478 [TBL] [Abstract][Full Text] [Related]
18. Low voltage blue phase liquid crystal for spatial light modulators. Peng F; Lee YH; Luo Z; Wu ST Opt Lett; 2015 Nov; 40(21):5097-100. PubMed ID: 26512528 [TBL] [Abstract][Full Text] [Related]
19. A spatial light modulator that uses scattering in a cholesteric liquid crystal. Saito M; Uemi H Rev Sci Instrum; 2016 Mar; 87(3):033102. PubMed ID: 27036753 [TBL] [Abstract][Full Text] [Related]
20. Analog modulation by the flexoelectric effect in liquid crystals. Yip WC; Welch C; Mehl GH; Wilkinson TD Appl Opt; 2020 Mar; 59(9):2668-2673. PubMed ID: 32225814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]