These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 3021201)
1. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Pettigrew DW Biochemistry; 1986 Aug; 25(16):4711-8. PubMed ID: 3021201 [TBL] [Abstract][Full Text] [Related]
2. Deoxycytidylate hydroxymethylase: purification, properties, and the role of a thiol group in catalysis. Lee MH; Gautam-Basak M; Woolley C; Sander EG Biochemistry; 1988 Feb; 27(4):1367-73. PubMed ID: 3284582 [TBL] [Abstract][Full Text] [Related]
3. Inactivation of Escherichia coli glycerol kinase by 5'-[p-(fluorosulfonyl)benzoyl]adenosine: protection by the hydrolyzed reagent. Pettigrew DW Biochemistry; 1987 Mar; 26(6):1723-7. PubMed ID: 3036208 [TBL] [Abstract][Full Text] [Related]
4. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W. Iwakura M; Tokushige M; Katsuki H J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642 [TBL] [Abstract][Full Text] [Related]
5. Studies on the reactivity of the essential sulfhydryl groups as a conformational probe for the fatty acid synthetase of chicken liver. Inactivation by 5,5'-dithiobis-(2-nitrobenzoic acid) and intersubunit cross-linking of the inactivated enzyme. Tian WX; Hsu RY; Wang YS J Biol Chem; 1985 Sep; 260(20):11375-87. PubMed ID: 4030792 [TBL] [Abstract][Full Text] [Related]
6. The reactions of Escherichia coli citrate synthase with the sulfhydryl reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and 4,4'-dithiodipyridine. Talgoy MM; Bell AW; Duckworth HW Can J Biochem; 1979 Jun; 57(6):822-33. PubMed ID: 38891 [TBL] [Abstract][Full Text] [Related]
7. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli. Mizuta K; Tokushige M Biochim Biophys Acta; 1975 Sep; 403(1):221-31. PubMed ID: 240429 [TBL] [Abstract][Full Text] [Related]
8. Functional cysteinyl residues in human placental aldose reductase. Liu SQ; Bhatnagar A; Das B; Srivastava SK Arch Biochem Biophys; 1989 Nov; 275(1):112-21. PubMed ID: 2510598 [TBL] [Abstract][Full Text] [Related]
9. Identification of different classes of nonessential sulfhydryl groups in Escherichia coli adenylosuccinate synthetase. Dong Q; Soans C; Liu F; Fromm HJ Arch Biochem Biophys; 1990 Jan; 276(1):77-84. PubMed ID: 2153366 [TBL] [Abstract][Full Text] [Related]
10. Determination of dissociation constants for enzyme-reactant complexes for NAD-malic enzyme by modulation of the thiol inactivation rate. Kiick DM; Allen BL; Rao JG; Harris BG; Cook PF Biochemistry; 1984 Nov; 23(23):5454-9. PubMed ID: 6509029 [TBL] [Abstract][Full Text] [Related]
11. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis. Ploux O; Lei Y; Vatanen K; Liu HW Biochemistry; 1995 Apr; 34(13):4159-68. PubMed ID: 7703227 [TBL] [Abstract][Full Text] [Related]
12. A comparative study of sulfhydryl groups required for the catalytic activity of gramicidin S synthetase and isoleucyl tRNA synthetase. Kanda M; Hori K; Kurotsu T; Miura S; Saito Y J Biochem; 1984 Sep; 96(3):701-11. PubMed ID: 6389530 [TBL] [Abstract][Full Text] [Related]
13. Effects of dithiothreitol, 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide on synaptic transmission at sympathetic ganglion cells of frog. Sasaki K; Riker WK Neuropharmacology; 1982 Dec; 21(12):1365-73. PubMed ID: 6296718 [TBL] [Abstract][Full Text] [Related]
14. Conformational features of bovine heart mitochondrial transhydrogenase. Modrak DE; Wu LN; Alberta JA; Fisher RR Biochemistry; 1988 Oct; 27(20):7665-71. PubMed ID: 3207696 [TBL] [Abstract][Full Text] [Related]
15. Effect of ligands on the reactivity of essential sulfhydryls in brain hexokinase. Possible interaction between substrate binding sites. Redkar VD; Kenkare UW Biochemistry; 1975 Oct; 14(21):4704-12. PubMed ID: 1237313 [TBL] [Abstract][Full Text] [Related]
16. Reactions of the sulfhydryl groups of alanyl-tRNA Synthetase. Chen ZQ; Kim JJ; Lai CS; Mehler AH Arch Biochem Biophys; 1984 Sep; 233(2):611-6. PubMed ID: 6091553 [TBL] [Abstract][Full Text] [Related]
17. Studies on regulatory functions of malic enzymes. IV. Effects of sulfhydryl group modification on the catalytic function of NAD-linked malic enzyme from Escherichia coli. Yamaguchi M J Biochem; 1979 Aug; 86(2):325-33. PubMed ID: 225306 [TBL] [Abstract][Full Text] [Related]
18. Evidence for a reactive cysteine at the nucleotide binding site of spinach ribulose-5-phosphate kinase. Omnaas J; Porter MA; Hartman FC Arch Biochem Biophys; 1985 Feb; 236(2):646-53. PubMed ID: 2982321 [TBL] [Abstract][Full Text] [Related]
19. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis. Salleh HM; Patel MA; Woodard RW Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of Acinetobacter calcoaceticus acetate kinase by diethylpyrocarbonate. Kim YS; Park C Biochim Biophys Acta; 1988 Sep; 956(2):103-9. PubMed ID: 2844264 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]