These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30212208)

  • 1. An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product Carpanone.
    Cortés-Borda D; Wimmer E; Gouilleux B; Barré E; Oger N; Goulamaly L; Peault L; Charrier B; Truchet C; Giraudeau P; Rodriguez-Zubiri M; Le Grognec E; Felpin FX
    J Org Chem; 2018 Dec; 83(23):14286-14299. PubMed ID: 30212208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconfigurable Flow Platform for Automated Reagent Screening and Autonomous Optimization for Bioinspired Lignans Synthesis.
    Aka EC; Wimmer E; Barré E; Vasudevan N; Cortés-Borda D; Ekou T; Ekou L; Rodriguez-Zubiri M; Felpin FX
    J Org Chem; 2019 Nov; 84(21):14101-14112. PubMed ID: 31568728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Polymer Synthesis by Autonomous Self-Optimizing Flow Reactors.
    Rubens M; Vrijsen JH; Laun J; Junkers T
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3183-3187. PubMed ID: 30375134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback in Flow for Accelerated Reaction Development.
    Reizman BJ; Jensen KF
    Acc Chem Res; 2016 Sep; 49(9):1786-96. PubMed ID: 27525813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A self optimizing synthetic organic reactor system using real-time in-line NMR spectroscopy.
    Sans V; Porwol L; Dragone V; Cronin L
    Chem Sci; 2015 Feb; 6(2):1258-1264. PubMed ID: 29560211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous Multi-Step and Multi-Objective Optimization Facilitated by Real-Time Process Analytics.
    Sagmeister P; Ort FF; Jusner CE; Hebrault D; Tampone T; Buono FG; Williams JD; Kappe CO
    Adv Sci (Weinh); 2022 Apr; 9(10):e2105547. PubMed ID: 35106974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Polymer Synthesis Platform for Integrated Conversion Targeting Based on Inline Benchtop NMR.
    Rubens M; Van Herck J; Junkers T
    ACS Macro Lett; 2019 Nov; 8(11):1437-1441. PubMed ID: 35651185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostatted micro-reactor NMR probe head for monitoring fast reactions.
    Brächer A; Hoch S; Albert K; Kost HJ; Werner B; von Harbou E; Hasse H
    J Magn Reson; 2014 May; 242():155-61. PubMed ID: 24650728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative dimerization of (E)- and (Z)-2-propenylsesamol with O2 in the presence and absence of laccases and other catalysts: selective formation of carpanones and benzopyrans under different reaction conditions.
    Constantin MA; Conrad J; Merişor E; Koschorreck K; Urlacher VB; Beifuss U
    J Org Chem; 2012 May; 77(10):4528-43. PubMed ID: 22458664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving a Nelder-Mead Algorithm for Optimization with Genetic Programming.
    Fajfar I; Puhan J; Bűrmen Á
    Evol Comput; 2017; 25(3):351-373. PubMed ID: 26807484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-line monitoring of chemical reactions by using bench-top nuclear magnetic resonance spectroscopy.
    Danieli E; Perlo J; Duchateau AL; Verzijl GK; Litvinov VM; Blümich B; Casanova F
    Chemphyschem; 2014 Oct; 15(14):3060-6. PubMed ID: 25111845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian Self-Optimization for Telescoped Continuous Flow Synthesis.
    Clayton AD; Pyzer-Knapp EO; Purdie M; Jones MF; Barthelme A; Pavey J; Kapur N; Chamberlain TW; Blacker AJ; Bourne RA
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214511. PubMed ID: 36346840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hard modeling methods for the curve resolution of data from liquid chromatography with a diode array detector and on-flow liquid chromatography with nuclear magnetic resonance spectroscopy.
    Wasim M; Brereton RG
    J Chem Inf Model; 2006; 46(3):1143-53. PubMed ID: 16711734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of hydrogenation of toluene to methylcyclohexane in a trickle bed reactor by low-field nuclear magnetic resonance spectroscopy.
    Guthausen G; von Garnier A; Reimert R
    Appl Spectrosc; 2009 Oct; 63(10):1121-7. PubMed ID: 19843362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways to New Applications for Quantum Control.
    Keefer D; de Vivie-Riedle R
    Acc Chem Res; 2018 Sep; 51(9):2279-2286. PubMed ID: 30152675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy.
    Beach NJ; Knapp SM; Landis CR
    Rev Sci Instrum; 2015 Oct; 86(10):104101. PubMed ID: 26520969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-optimizing parallel millifluidic reactor for scaling nanoparticle synthesis.
    Wang L; Karadaghi LR; Brutchey RL; Malmstadt N
    Chem Commun (Camb); 2020 Apr; 56(26):3745-3748. PubMed ID: 32125333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intelligent routes to the controlled synthesis of nanoparticles.
    Krishnadasan S; Brown RJ; deMello AJ; deMello JC
    Lab Chip; 2007 Nov; 7(11):1434-41. PubMed ID: 17960268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new cross-coupling-based synthesis of carpanone.
    Liron F; Fontana F; Zirimwabagabo JO; Prestat G; Rajabi J; La Rosa C; Poli G
    Org Lett; 2009 Oct; 11(19):4378-81. PubMed ID: 19725522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.