BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 3021225)

  • 1. Nucleoside 5'-triphosphates with modified sugars as substrates for DNA polymerases.
    Chidgeavadze ZG; Beabealashvilli RSh; Krayevsky AA; Kukhanova MK
    Biochim Biophys Acta; 1986 Nov; 868(2-3):145-52. PubMed ID: 3021225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization.
    Kempeneers V; Renders M; Froeyen M; Herdewijn P
    Nucleic Acids Res; 2005; 33(12):3828-36. PubMed ID: 16027107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of non-nucleoside triphosphate analogues opposite to an abasic site by human DNA polymerases beta and lambda.
    Crespan E; Zanoli S; Khandazhinskaya A; Shevelev I; Jasko M; Alexandrova L; Kukhanova M; Blanca G; Villani G; Hübscher U; Spadari S; Maga G
    Nucleic Acids Res; 2005; 33(13):4117-27. PubMed ID: 16043633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery.
    Coggins SA; Mahboubi B; Schinazi RF; Kim B
    J Biol Chem; 2020 Sep; 295(39):13432-13443. PubMed ID: 32737197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereochemical control of DNA biosynthesis.
    Sosunov VV; Santamaria F; Victorova LS; Gosselin G; Rayner B; Krayevsky AA
    Nucleic Acids Res; 2000 Mar; 28(5):1170-5. PubMed ID: 10666459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus.
    Evans SJ; Fogg MJ; Mamone A; Davis M; Pearl LH; Connolly BA
    Nucleic Acids Res; 2000 Mar; 28(5):1059-66. PubMed ID: 10666444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases.
    Welter M; Verga D; Marx A
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10131-5. PubMed ID: 27392211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic nucleotides as probes of DNA polymerase specificity.
    Walsh JM; Beuning PJ
    J Nucleic Acids; 2012; 2012():530963. PubMed ID: 22720133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase.
    Ramsay N; Jemth AS; Brown A; Crampton N; Dear P; Holliger P
    J Am Chem Soc; 2010 Apr; 132(14):5096-104. PubMed ID: 20235594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic Biology Pathway to Nucleoside Triphosphates for Expanded Genetic Alphabets.
    Li Y; Abraham C; Suslov O; Yaren O; Shaw RW; Kim MJ; Wan S; Marliere P; Benner SA
    ACS Synth Biol; 2023 Jun; 12(6):1772-1781. PubMed ID: 37227319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-enzyme model for Pyrosequencing.
    Agah A; Aghajan M; Mashayekhi F; Amini S; Davis RW; Plummer JD; Ronaghi M; Griffin PB
    Nucleic Acids Res; 2004 Dec; 32(21):e166. PubMed ID: 15576673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phosphamide nucleotide analog: a substrate for polymerase synthesis of DNA.
    Meng J; Guo Q; Zhai X; Yang S; Wang S; Wang P; Ji D
    Org Biomol Chem; 2024 Apr; 22(15):2963-2967. PubMed ID: 38529657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial nucleotide codons for enzymatic DNA synthesis.
    Sabat N; Stämpfli A; Flamme M; Hanlon S; Bisagni S; Sladojevich F; Püntener K; Hollenstein M
    Chem Commun (Camb); 2023 Dec; 59(98):14547-14550. PubMed ID: 37987464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate Specificity of T7 RNA Polymerase toward Hypophosphoric Analogues of ATP.
    Pawlowska R; Graczyk A; Radzikowska-Cieciura E; Wielgus E; Madaj R; Chworos A
    ACS Omega; 2024 Feb; 9(8):9348-9356. PubMed ID: 38434886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody-nucleotide conjugate as a substrate for DNA polymerases.
    Balintová J; Welter M; Marx A
    Chem Sci; 2018 Sep; 9(35):7122-7125. PubMed ID: 30310633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microbiological system for screening the interference of XNA monomers with DNA and RNA metabolism.
    Blanchard A; Abramov M; Hassan C; Marlière P; Herdewijn P; Pezo V
    RSC Adv; 2023 Oct; 13(43):29862-29865. PubMed ID: 37842681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic synthesis of DNA strands containing α-L-LNA (α-L-configured locked nucleic acid) thymine nucleotides.
    Højland T; Veedu RN; Vester B; Wengel J
    Artif DNA PNA XNA; 2012; 3(1):14-21. PubMed ID: 22679529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism.
    Urban S; Urban S; Fischer KP; Tyrrell DL
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):4984-9. PubMed ID: 11320247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Termination of DNA synthesis by novel 3'-modified-deoxyribonucleoside 5'-triphosphates.
    Metzker ML; Raghavachari R; Richards S; Jacutin SE; Civitello A; Burgess K; Gibbs RA
    Nucleic Acids Res; 1994 Oct; 22(20):4259-67. PubMed ID: 7937154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic editing properties of DNA polymerases.
    Canard B; Cardona B; Sarfati RS
    Proc Natl Acad Sci U S A; 1995 Nov; 92(24):10859-63. PubMed ID: 7479898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.