These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 30212270)
1. Soluble glycoproteins of the lacrimal sac: role in defense with special reference to prolactin-inducible protein (PIP). Ali MJ; Venugopal A; Ranganath KS; Jagannadham MV; Nadimpalli SK Orbit; 2019 Aug; 38(4):279-284. PubMed ID: 30212270 [No Abstract] [Full Text] [Related]
2. Qualitative Hormonal Profiling of the Lacrimal Drainage System: Potential Insights into the Etiopathogenesis of Primary Acquired Nasolacrimal Duct Obstruction. Ali MJ; Schicht M; Paulsen F Ophthalmic Plast Reconstr Surg; 2017; 33(5):381-388. PubMed ID: 28759505 [TBL] [Abstract][Full Text] [Related]
3. Expression of sodium iodide symporter in the lacrimal drainage system: implication for the mechanism underlying nasolacrimal duct obstruction in I(131)-treated patients. Morgenstern KE; Vadysirisack DD; Zhang Z; Cahill KV; Foster JA; Burns JA; Kloos RT; Jhiang SM Ophthalmic Plast Reconstr Surg; 2005 Sep; 21(5):337-44. PubMed ID: 16234694 [TBL] [Abstract][Full Text] [Related]
4. Alteration of Tear Cytokine Expressions in Primary Acquired Nasolacrimal Duct Obstruction - Potential Insights into the Etiopathogenesis. Ali MJ; Patnaik S; Kelkar N; Ali MH; Kaur I Curr Eye Res; 2020 Apr; 45(4):435-439. PubMed ID: 31490706 [No Abstract] [Full Text] [Related]
5. Characterization of mucins in human lacrimal sac and nasolacrimal duct. Paulsen FP; Corfield AP; Hinz M; Hoffmann W; Schaudig U; Thale AB; Berry M Invest Ophthalmol Vis Sci; 2003 May; 44(5):1807-13. PubMed ID: 12714609 [TBL] [Abstract][Full Text] [Related]
6. Prolactin and Prolactin-inducible protein (PIP) in the pathogenesis of primary acquired nasolacrimal duct obstruction (PANDO). Ali MJ; Paulsen F Med Hypotheses; 2019 Apr; 125():137-138. PubMed ID: 30902142 [TBL] [Abstract][Full Text] [Related]
7. Precursor carboxy-silica for functionalization with interactive ligands. III. Carbodiimide assisted preparation of immobilized lectin stationary phases for high performance lectin affinity chromatography of sub-glycoproteomics from cancer and disease free human sera. Paranamana N; El Rassi Z J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Feb; 1233():123992. PubMed ID: 38199060 [TBL] [Abstract][Full Text] [Related]
8. scRNA-Seq: First Atlas and Cellular Landscape of Lacrimal Sac: Implications in Primary Acquired Nasolacrimal Duct Obstruction Pathogenesis. Zhang W; Huang H; Liu X; Zhang L; Li L; Ding Y; Xiao Y; Ali MJ; Sun H; Xiao C Invest Ophthalmol Vis Sci; 2024 Mar; 65(3):38. PubMed ID: 38551583 [TBL] [Abstract][Full Text] [Related]
9. Relationship between lacrimal sac size and duration of tearing in nasolacrimal duct obstruction. Lee MJ; Kim IH; Choi YJ; Kim N; Choung HK; Khwarg SI Can J Ophthalmol; 2019 Feb; 54(1):111-115. PubMed ID: 30851763 [TBL] [Abstract][Full Text] [Related]
10. Lysosomal enzymes and mannose 6-phosphate receptors in the lacrimal drainage system: Evidence and its potential implications. Ali MJ; Venugopal A; Ranganath KS; Kumar NS Indian J Ophthalmol; 2018 Nov; 66(11):1595-1599. PubMed ID: 30355869 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of indocyanine green gel in the identification and complete removal of the medial wall of the lacrimal sac during endoscopic endonasal dacryocystorhinostomy. Park J; Lee J; Lee H; Baek S Can J Ophthalmol; 2017 Oct; 52(5):494-498. PubMed ID: 28985810 [TBL] [Abstract][Full Text] [Related]
12. Identification of lectin binding proteins in human tears. Kuizenga A; van Haeringen NJ; Kijlstra A Invest Ophthalmol Vis Sci; 1991 Dec; 32(13):3277-84. PubMed ID: 1748557 [TBL] [Abstract][Full Text] [Related]
13. Changes of soluble glycoproteins in dystrophic (dy/dy) mouse muscle shown by lectin binding. Kirkeby S; Garbarsch C; Matthiessen ME; Bøg-Hansen TC; Moe D Pathobiology; 1992; 60(6):297-302. PubMed ID: 1290587 [TBL] [Abstract][Full Text] [Related]
14. Con A- and WGA-binding glycoproteins of stationary and migratory corneal epithelium. Zieske JD; Higashijima SC; Gipson IK Invest Ophthalmol Vis Sci; 1986 Aug; 27(8):1205-10. PubMed ID: 3755423 [TBL] [Abstract][Full Text] [Related]
15. Clinicopathologic study of lacrimal sac and nasal mucosa in 44 patients with complete acquired nasolacrimal duct obstruction. Mauriello JA; Palydowycz S; DeLuca J Ophthalmic Plast Reconstr Surg; 1992; 8(1):13-21. PubMed ID: 1554647 [TBL] [Abstract][Full Text] [Related]
16. Clinicopathologic analysis of 166 patients with primary acquired nasolacrimal duct obstruction. Lee-Wing MW; Ashenhurst ME Ophthalmology; 2001 Nov; 108(11):2038-40. PubMed ID: 11713075 [TBL] [Abstract][Full Text] [Related]
17. Lectin affinity and PAGE analysis of soluble axonally transported glycoconjugates in the rat visual system. Rhodes CH; Gonatas NK Brain Res; 1986 Dec; 399(1):42-50. PubMed ID: 2433000 [TBL] [Abstract][Full Text] [Related]
18. Complex glycoproteins associated with the detergent-resistant membrane matrix of the rhabdomeral microvilli of crayfish photoreceptors. de Couet HG Exp Eye Res; 1984 Sep; 39(3):279-97. PubMed ID: 6542022 [TBL] [Abstract][Full Text] [Related]
19. Goat sperm membrane: lectin-binding sites of sperm surface and lectin affinity chromatography of the mature sperm membrane antigens. Sarkar M; Majumder GC; Chatterjee T Biochim Biophys Acta; 1991 Nov; 1070(1):198-204. PubMed ID: 1751526 [TBL] [Abstract][Full Text] [Related]
20. Tandem lectin affinity chromatography monolithic columns with surface immobilised concanavalin A, wheat germ agglutinin and Ricinus communis agglutinin-I for capturing sub-glycoproteomics from breast cancer and disease-free human sera. Selvaraju S; El Rassi Z J Sep Sci; 2012 Jul; 35(14):1785-95. PubMed ID: 22807361 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]