These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 30212730)

  • 1. Human skin volatiles: Passive sampling and GC × GC-ToFMS analysis as a tool to investigate the skin microbiome and interactions with anthropophilic mosquito disease vectors.
    Roodt AP; Naudé Y; Stoltz A; Rohwer E
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Oct; 1097-1098():83-93. PubMed ID: 30212730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical profiling of the human skin surface for malaria vector control via a non-invasive sorptive sampler with GC×GC-TOFMS.
    Wooding M; Rohwer ER; Naudé Y
    Anal Bioanal Chem; 2020 Sep; 412(23):5759-5777. PubMed ID: 32681223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive sorptive extraction for the separation of human skin surface chemicals using comprehensive gas chromatography coupled to time-of-flight mass spectrometry: A mosquito-host biting site investigation.
    Wooding M; Rohwer ER; Naudé Y
    J Sep Sci; 2020 Nov; 43(22):4202-4215. PubMed ID: 32902131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin.
    Grabowska-Polanowska B; Miarka P; Skowron M; Sułowicz J; Wojtyna K; Moskal K; Śliwka I
    Bioanalysis; 2017 Oct; 9(19):1465-1475. PubMed ID: 29056065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal desorption comprehensive two-dimensional gas chromatography coupled to variable-energy electron ionization time-of-flight mass spectrometry for monitoring subtle changes in volatile organic compound profiles of human blood.
    Dubois LM; Perrault KA; Stefanuto PH; Koschinski S; Edwards M; McGregor L; Focant JF
    J Chromatogr A; 2017 Jun; 1501():117-127. PubMed ID: 28473200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human-pathogen-vector interactions.
    Dormont L; Bessière JM; McKey D; Cohuet A
    J Exp Biol; 2013 Aug; 216(Pt 15):2783-8. PubMed ID: 23580718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-invasive method for in vivo skin volatile compounds sampling.
    Jiang R; Cudjoe E; Bojko B; Abaffy T; Pawliszyn J
    Anal Chim Acta; 2013 Dec; 804():111-9. PubMed ID: 24267071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying novel approaches for GC × GC-TOF-MS data cleaning and trends clustering in VOCs time-series analysis: Following the volatiles fate in grass baths through passive diffusion sampling.
    Narduzzi L; Franciosi E; Carlin S; Tuohy K; Beretta A; Pedrotti F; Mattivi F
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Oct; 1096():56-65. PubMed ID: 30149295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS).
    Johanningsmeier SD; McFeeters RF
    J Food Sci; 2011; 76(1):C168-77. PubMed ID: 21535646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-targeted analysis of the particulate phase of heated tobacco product aerosol and cigarette mainstream tobacco smoke by thermal desorption comprehensive two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection.
    Savareear B; Escobar-Arnanz J; Brokl M; Saxton MJ; Wright C; Liu C; Focant JF
    J Chromatogr A; 2019 Oct; 1603():327-337. PubMed ID: 31266643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.
    Agapiou A; Zorba E; Mikedi K; McGregor L; Spiliopoulou C; Statheropoulos M
    Anal Chim Acta; 2015 Jul; 883():99-108. PubMed ID: 26088782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the volatile profile of Brazilian Merlot wines through comprehensive two dimensional gas chromatography time-of-flight mass spectrometric detection.
    Welke JE; Manfroi V; Zanus M; Lazarotto M; Alcaraz Zini C
    J Chromatogr A; 2012 Feb; 1226():124-39. PubMed ID: 22277184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leaf-deposited semi-volatile organic compounds (SVOCs): An exploratory study using GCxGC-TOFMS on leaf washing solutions.
    Castanheiro A; Joos P; Wuyts K; De Wael K; Samson R
    Chemosphere; 2019 Jan; 214():103-110. PubMed ID: 30261416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal chemometric approach for the analysis of human exhaled breath in lung cancer patients by TD-GC × GC-TOFMS.
    Pesesse R; Stefanuto PH; Schleich F; Louis R; Focant JF
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 May; 1114-1115():146-153. PubMed ID: 30745111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Headspace solid-phase microextraction combined with GC×GC-TOFMS for the analysis of volatile compounds of Coptis species rhizomes.
    Gao X; Yang X; Mitrevski BS; Marriott PJ
    J Sep Sci; 2011 May; 34(10):1157-66. PubMed ID: 21491598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectral studies on the human skin surface for mosquito vector control applications.
    Wooding M; Dodgen T; Rohwer ER; Naudé Y
    J Mass Spectrom; 2021 Feb; 56(2):e4686. PubMed ID: 33462985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volatile Analysis of Wuliangye Baijiu by LiChrolut EN SPE Fractionation Coupled with Comprehensive GC×GC-TOFMS.
    Zheng J; He Z; Yang K; Liu Z; Zhao D; Qian MC
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry.
    Wang W; Feng X; Zhang D; Li B; Sun B; Tian H; Liu Y
    Meat Sci; 2018 Jun; 140():14-25. PubMed ID: 29501929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry for the determination of volatile compounds from marine salt.
    Silva I; Rocha SM; Coimbra MA; Marriott PJ
    J Chromatogr A; 2010 Aug; 1217(34):5511-21. PubMed ID: 20633884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges of fast sampling of volatiles for thermal desorption gas chromatography - mass spectrometry.
    Marcillo A; Weiß BM; Widdig A; Birkemeyer C
    J Chromatogr A; 2020 Apr; 1617():460822. PubMed ID: 31928772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.