These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 3021289)

  • 1. Effects of hypothalamic lesions on active sodium-potassium transport in the extensor digitorum longus muscles of hypokalemic rat.
    Katafuchi T; Yoshimatsu H; Oomura Y; Akaike N
    Brain Res Bull; 1986 Aug; 17(2):151-3. PubMed ID: 3021289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N; Hirata A; Kiyohara T; Oyama Y
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypothalamus and sodium-potassium pump activity in skeletal muscles of DOCA-hypertensive rats.
    Katafuchi T; Oomura Y; Maruyama T; Akaike N
    Am J Physiol; 1987 Sep; 253(3 Pt 2):R396-401. PubMed ID: 2820248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypothalamic regulation of sodium-potassium pump activity in skeletal muscle.
    Yoshimatsu H; Oomura Y; Katafuchi T; Akaike N
    Brain Res; 1986 Oct; 384(1):17-22. PubMed ID: 2431741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative in vivo studies on the active Na-K transports in "tonic" muscle of the hypokalemic rat.
    Akaike N; Kiyohara T; Oyama Y
    Jpn J Physiol; 1983; 33(3):323-36. PubMed ID: 6314005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active sodium-potassium transports in skeletal muscles of deoxycorticosterone hypertensive rats.
    Nagaoka R; Yamashita S; Maruyama T; Akaike N
    Brain Res; 1987 May; 410(2):283-91. PubMed ID: 3036309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNS control of active sodium transport in muscle during progressive hypokalemia in the rat.
    Akaike N
    Brain Res; 1982 May; 239(2):575-81. PubMed ID: 6284307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the Na-K pump by intracellular Na in rat slow- and fast-twitch muscle.
    Everts ME; Clausen T
    Acta Physiol Scand; 1992 Aug; 145(4):353-62. PubMed ID: 1326854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in K+, Na+ and calcium contents during in vivo stimulation of rat skeletal muscle.
    Everts ME; Lømo T; Clausen T
    Acta Physiol Scand; 1993 Apr; 147(4):357-68. PubMed ID: 8388152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change of intracellular K+ activity in rat soleus muscle during hypokalemia.
    Nagaoka R; Yamashita S; Akaike N
    Brain Res Bull; 1989 Jun; 22(6):1009-13. PubMed ID: 2790493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hypokalemia on the properties and expression of the (Na+,K+)-ATPase of rat skeletal muscle.
    Hsu YM; Guidotti G
    J Biol Chem; 1991 Jan; 266(1):427-33. PubMed ID: 1702427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle Na,K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity.
    Thompson CB; McDonough AA
    J Biol Chem; 1996 Dec; 271(51):32653-8. PubMed ID: 8955095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in renal function, membrane protein metabolism, and Na,K-ATPase activity and abundance in hypokalemic F344 x BNF(1) rats.
    Eiam-Ong S; Sabatini S
    Gerontology; 1999; 45(5):254-64. PubMed ID: 10460986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In isolated skeletal muscle, excitation may increase extracellular K+ 10-fold; how can contractility be maintained?
    Clausen T
    Exp Physiol; 2011 Mar; 96(3):356-68. PubMed ID: 21123362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Na(+)-K+ ATPase concentration in different adult rat skeletal muscles is related to oxidative potential.
    Chin ER; Green HJ
    Can J Physiol Pharmacol; 1993 Aug; 71(8):615-8. PubMed ID: 8306201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between magnesium and potassium contents in muscle: role of Na(+)-K+ pump.
    Dørup I; Clausen T
    Am J Physiol; 1993 Feb; 264(2 Pt 1):C457-63. PubMed ID: 8383433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal responses of oxidative vs. glycolytic skeletal muscles to K+ deprivation: Na+ pumps and cell cations.
    Thompson CB; Choi C; Youn JH; McDonough AA
    Am J Physiol; 1999 Jun; 276(6):C1411-9. PubMed ID: 10362605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.